Reducts of Primitive Jordan Structures

David Bradley-Williams

University of Central Lancashire

November 2015

Let \mathscr{M} be a first-order structure with universe Ω . A relational structure \mathscr{N} is a **reduct** of \mathscr{M} if

- \mathcal{N} has universe Ω ;
- Every relation of \mathscr{N} is \emptyset -definable in \mathscr{M} .

Definition

- If \mathscr{M} is also a reduct of \mathscr{N} then \mathscr{M} and \mathscr{N} are **interdefinable**.
- Otherwise \mathcal{N} is a **proper** reduct of \mathcal{M} .

Reducts

Definition

Let $\mathscr M$ be a first-order structure with universe $\Omega.$ A relational structure $\mathscr N$ is a reduct of $\mathscr M$ if

- *N* has universe Ω;
- Every relation of \mathscr{N} is \emptyset -definable in \mathscr{M} .

Theorem (Cameron)

Let $\mathscr{M}=(\mathbb{Q},<)$ and \mathscr{N} a reduct of $\mathscr{M}.$ Then \mathscr{N} is interdefinable with

- $\mathcal{M} = (\mathbb{Q}, <);$
- (\mathbb{Q} , bet), where bet(x, y, z) is betweenness on \mathbb{Q} ;
- $(\mathbb{Q}, circ)$, where circ(x, y, z) is the circular ordering of \mathbb{Q} ;
- (\mathbb{Q} , sep), where sep(x, y, z, w) is the separation relation on \mathbb{Q} ;
- (Q,=), the trivial structure.

Topology on $Sym(\Omega)$

Fix Ω a countably infinite set.

Definition

The **pointwise convergence** topology on $Sym(\Omega)$ is inherited from Ω^{Ω} .

This is generated by a basis of clopen sets

$$[g]_A = \{h : h_{\upharpoonright A} = g_{\upharpoonright A}\},\$$

for finite $A \subseteq Sym(\Omega)$.

Fact

 Closed subgroups of Sym(Ω) are automorphism groups of relational structures.

 \mathscr{M} is ω -categorical if every countable $\mathscr{N} \models \operatorname{Th}(\mathscr{M})$ is isomorphic to \mathscr{M} .

Theorem (Ryll-Nardzewski)

 \mathcal{M} is ω -categorical if and only if $(\operatorname{Aut}(M), \Omega)$ is oligomorphic.

Fact (*M* is ω -categorical)

Let G be a closed subgroup of $Sym(\Omega)$, \mathcal{N} a relational structure with $G = Aut(\mathcal{N})$. Then \mathcal{N} is a (proper) reduct of \mathcal{M} iff G (properly) contains $Aut(\mathcal{M})$.

Example

- Cameron 5 reducts of $(\mathbb{Q}, <)$;
- Thomas 5 reducts of the Random Graph;
- Thomas No proper reducts of the generic K_n -free graphs;
- Bennett 5 reducts of the generic tournament;
- Junker-Ziegler 116 reducts of $(\mathbb{Q}, <, 0)$;
- Pach-Pinsker-Pluhár-Pongrácz-Szabó 5 reducts of generic partial order;
- Bodirsky-Pinsker-Pongrácz 42 proper reducts of the generic ordered graph;
- Agarwal 11 reducts of generic digraph;
- Agarwal-Kompatscher uncountably many Henson digraphs with no proper reducts.

M is **homogeneous** if every isomorphism between finite substructures extends to an automorphism.

Definition

M is **finitely homogeneous** if it is homogeneous in some finite relational language.

Conjecture (Thomas)

If M is finitely homogeneous then it has only finitely many reducts up to interdefinability.

We seek some general progress towards this!

Semilinear orderings

Definition

A partial ordering $(\Omega, <)$ is semilinear if

- Every two points have some lower bound;
- For every a, $L_a = \{x \le a\}$ is linear;
- $(\Omega, <)$ is not linear.

Example

Construction of (Q,2,+) yields a countable semilinear ordering $\mathscr{M}=(\Omega,<).$

Semilinear orderings

Definition

A partial ordering $(\Omega, <)$ is semilinear if

- Every two points have some lower bound;
- For every a, $L_a = \{x \le a\}$ is linear;
- $(\Omega, <)$ is not linear.

Example

Construction of (Q, 2, +) yields a countable semilinear ordering $\mathcal{M} = (\Omega, <)$.

Definition

 ${\mathscr M}$ is relatively 2-transitive if every isomorphism between 2-element substructures extends to an automorphism.

David Bradley-Williams (UCLan)

Reducts of Primitive Jordan Structures

November 2015 8 / 18

Semilinear orderings

Definition

A partial ordering $(\Omega, <)$ is semilinear if

- Every two points have some lower bound;
- For every a, $L_a = \{x < a\}$ is linear;
- $(\Omega, <)$ is not linear.

Definition

 \mathcal{M} is **relatively 2-transitive** if every isomorphism between 2-element substructures extends to an automorphism.

Example

(Q, 2, +) is a relatively 2-transitive semilinear ordering, not homogeneous.

Theorem (Droste)

Let $\mathscr{M} = (\Omega, <)$ be a countable, relatively 2-transitive semilinear ordering. Then \mathscr{M} is isomorphic to $(\mathbb{Q}, k, +/-)$ for some choice of branching order $k \in \mathbb{N} \cup \{\aleph_0\}$ and choice of + or -. They are pairwise non-isomorphic.

Droste calls these 2-homogeneous trees.

Theorem (Droste-Holland-Macpherson)

Every such $(\mathbb{Q}, k, +/-)$ is finitely homogeneous (in a ternary language). Hence they are all ω -categorical.

Let $\mathscr{M} = (\Omega, <)$ be a semilinear ordering. For $x, z \in \Omega$ define the **path** from x to z

$$[x,z] := L_x \triangle L_z (\cup \{x \land z\}).$$

The **betweenness relation** in \mathcal{M} is given by:

$$B(x, y, z) \Leftrightarrow y \in [x, z].$$

Aut (Ω, B) is the collection of **re-rootings** of \mathcal{M} .

Theorem (Bodirsky-BW-Pinsker-Pongrácz)

Let $\mathcal{M} = (\Omega, <)$ be the semilinear ordering $(\mathbb{Q}, 2, -)$ and \mathcal{N} a reduct. Then \mathcal{N} is interdefinable with

- $\mathcal{M} = (\Omega, <);$
- (Ω, B);
- (Ω,=).

A corollary to classifying the model complete cores of reducts of \mathcal{M} .

Theorem (BW)

Let $\mathcal{M} = (\Omega, <)$ be a relatively 2-transitive semilinear ordering, that is any $(\mathbb{Q}, k, +/-)$, and \mathcal{N} a reduct. Then \mathcal{N} is interdefinable with

- $\mathcal{M} = (\Omega, <);$
- (Ω, B);
- (Ω,=).

Jordan Groups

Definition

Let (G, Ω) be a transitive permutation group. A **Jordan set** is a subset $\Gamma \subset \Omega$ with $|\Gamma| > 1$ such that $(G_{(\Omega \setminus \Gamma)}, \Gamma)$ is transitive.

Example

- Ω is a Jordan set.
- If G is n+1-transitive and Θ ⊂ Ω a finite set of n points, then Ω \ Θ is a Jordan set.

Definition

A Jordan set is **proper** if it is non-trivial and neither of the above.

Definition

If G admits a proper Jordan set then we call it a Jordan group.

David Bradley-Williams (UCLan)

Reducts of Primitive Jordan Structures

November 2015 13 / 18

Let (G, Ω) be a transitive permutation group. A **Jordan set** is a subset $\Gamma \subset \Omega$ with $|\Gamma| > 1$ such that $(G_{(\Omega \setminus \Gamma)}, \Gamma)$ is transitive.

Definition

If G admits a proper Jordan set then we call it a **Jordan group**.

Definition

Call \mathscr{N} a **Jordan** structure if $(\operatorname{Aut}(\mathscr{N}), \Omega)$ is a Jordan group.

Example

- Aut(Q, <) is a primitive Jordan group. Jordan sets are open intervals.
- A relatively 2-transitive semilinear order is a primitive Jordan structure. Cones are primitive Jordan sets (Adeleke-Neumann).

< ロ > < 同 > < 回 > < 回 > < 回 >

Fact (Basic properties of Jordan sets)

Let Γ_1 and Γ_2 be proper Jordan sets for (G, Ω) . Then

- All translates of Γ₁ are proper Jordan sets;
- If $\Gamma_1 \cap \Gamma_2 \neq \emptyset$ then $\Gamma_1 \cup \Gamma_2$ is a proper Jordan set.

We have a family of Jordan sets.

Fact

Let $G \leq H \leq Sym(\Omega)$, and Γ a proper (primitive) Jordan set for G. Then Γ is a Jordan set for H.

Fact (Basic properties of Jordan sets)

Let Γ_1 and Γ_2 be proper Jordan sets for (G, Ω) . Then

- All translates of Γ₁ are proper Jordan sets;
- If $\Gamma_1 \cap \Gamma_2 \neq \emptyset$ then $\Gamma_1 \cup \Gamma_2$ is a proper Jordan set.

We have a family of Jordan sets.

Fact

Let $G \leq H \leq Sym(\Omega)$, and Γ a proper (primitive) Jordan set for G. Then Γ is a Jordan set for H.

Fact

Reducts of primitive Jordan structures are primitive Jordan structures!

Theorem (Adeleke-Neumann)

Let (G, Ω) be an infinite, primitive Jordan group which is not highlytransitive on Ω with a primitive Jordan set. Then G preserves on Ω one of the following kinds of structure:

- Dense linear ordering (or first order reduct);
- Oense semilinear ordering;
- Dense B-relation;
- Proper C-relation;
- Proper D-relation.

These relational structures are studied and axiomatised by Adeleke-Neumann.

Theorem (Bodirsky-Macpherson)

Bodirsky and Macpherson constructed a D-relation such that (Ω, D) is a primitive Jordan structure, is not ω -categorical and has **no proper**, **non-trivial reducts** and Aut (Ω, D) is **maximally closed** in Sym (Ω) .

Theorem (Bodirsky-Macpherson)

Bodirsky and Macpherson constructed a D-relation such that (Ω, D) is a primitive Jordan structure, is not ω -categorical and has **no proper**, **non-trivial reducts** and Aut (Ω, D) is **maximally closed** in Sym (Ω) .

Theorem (Kaplan-Simon)

Let V be a vector space of dimension $n \ge 3$ over the field \mathbb{Q} . So $AGL(n, \mathbb{Q}) = Aut(V, f)$ with f(x, y, z) = x + y - z. Then

- (V, f) has no proper, non-trivial reducts;
- $AGL(n, \mathbb{Q})$ is maximally closed in Sym (Ω) .

Similar result for $PGL(n, \mathbb{Q})$.

- 4 目 ト - 4 日 ト - 4 日 ト

Work to do

Classify primitive, countable Jordan semilinear orders.

- Consider weakly 2-transitive trees of Droste-Holland-Macpherson.
- Consider the classification of countably 1-transitive trees by Truss-Chicot.

Conjecture

Every countable, finitely homogeneous, binary-language, primitive Jordan structure has only finitely many reducts.