Applications of Laplacian eigenfunctions and heat kernels in computational anatomy

Mirza Faisal Beg, Ph.D., P.Eng.
Karteek Popuri, Ph.D

School of Engineering Science
Simon Fraser University
2D to 3D imaging

Thomas Eakins, The Agnew Clinic, 1889

Modern radiograph (2D)

Modern CT (3D)

Modern MRI (3D)
Modern Imagers can “see”, but not quantify, measure or “understand”

- Future imaging systems will be “intelligent” - delivering detailed inferences regarding observed anatomical structure and function.

- Understanding will be via established statistical limits of variability in normal state and disease.

- Computational Anatomy – Quantifying shape changes from medical images.
Brain Diseases show pathology-specific evolution

http://www.alz.org

Our Preliminary Results

Brettschneider et al.
Acta Neuropathol (2014)

N=34

Goedert et al.
Neurology Nature Rev., 2013

N=30

Mathias et al.
Nature, 2013

N=8

VBM+TBM

N=19
3D Imaging of the Eye: Computational Retina Anatomy

2D Fundus image

3D OCT Image
Computational Retinal Anatomy
Computational Retinal Anatomy

Mean Thickness (mm)

Glaucome

T-values

p-values

NFL

Choroid

OD

OS (re-oriented)
2D to 3D imaging to Anatomical Models
Extrinsic approach

- Shape represented via diffeomorphic deformation $\phi^{(i)}$: $M^{(i)} = \Phi^{(i)}(M^{(atlas)})$
- Signal $f^{(i)}$ mapped onto $M^{(atlas)}$ via $\Phi^{(i)}$
- Atlas selection is an open problem
- Sensitive to the accuracy of the estimated $\Phi^{(i)}$
Intrinsic approach

- Without using an extrinsic template
- Set of scalars as shape and signal features:
 - Shape parameterization using spherical harmonics [Gerig 01]
 - (Shape-DNA) - Laplacian eigenvalue spectrum [Reuter 05]
 - Partition functions on M for regional signal statistics [Qiu 08]
Laplacian eigenfunctions

• Laplace-Beltrami problem for the manifold M:

$$\Delta_M \psi(u) + \lambda \psi(u) = 0$$

$$\int_M |\psi(u)|^2 \, dM = 1 \quad < \nabla_M \psi(u), n > |_{\partial M} = 0$$

- Eigenvalues: $0 \leq \lambda_1 \leq \lambda_2 \ldots \infty$
- Eigenfunctions: $\psi_1, \psi_2, \psi_3, \ldots$

- Eigenfunctions form orthogonal basis and eigenvalues are isometric invariant

• Solution methods:
 - Finite Element Method (FEM) [Reuter 06] [Qiu 08]
 - Commuting with an integral operator [Saito 07]
SPHARM parameterization

- SPHARM are eigenfunctions of a sphere
- Map surface to a unit sphere and parameterize:
 \[v(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_l^m Y_l^m(\theta, \phi) \]
 - \(l \) - degree, \(m \) - order
 - \(c = (c_0^0, c_{-1}^1, c_1^0, \ldots) \) are the shape features

[Gerig 01] contd...
• Hippocampus shape features for AD classification:
 23 AD and 25 controls (CN)
• SPHARM of degree 20 chosen
• AD vs CN classification accuracy 94% (leave-one-out) using SVM and t-test based feature selection
Laplacian eigenvalue features

• Eigenvalues directly as a shape feature (Shape-DNA): [Niethammer 08]
 ▪ normalized using surface area for scale invariance
 ▪ Caudate surfaces
 ▪ Group-wise differences between Schizotypal personality disorder and control subjects

• Eigenvalue ratios as pose/scale invariant shape features: [Beg 04]
 \[Z_1 = \left(\frac{\lambda_1}{\lambda_2}, \frac{\lambda_1}{\lambda_3}, \ldots \right)\]
 \[Z_2 = \left(\frac{\lambda_1}{\lambda_2}, \frac{\lambda_2}{\lambda_3}, \ldots \right)\]
 \[Z_3 = \left(\frac{\lambda_1}{\lambda_2} - \frac{d_1}{d_2}, \frac{\lambda_1}{\lambda_3} - \frac{d_1}{d_3}, \ldots \right)\]

▪ Binary hippocampal volumes
▪ Group-wise differences between AD and controls
Partitioning anatomical manifolds

- Nodal lines: zero-level sets of eigenfunctions
- Lower order eigenfunction nodal lines partition domain in a geometrically meaningful manner
- Signal statistics in each partition are comparable across different subjects

contd...
Partitioning anatomical manifolds

• Normalized signal in the k^{th} partition of n^{th} eigenfunction as a feature:

$$\bar{f}_{nk}^{(j)} = \frac{\int_{M(j)} f^{(j)}(x) \psi_{nk}^{(j)}(x) ds(x)}{\int_{M(j)} \psi_{nk}^{(j)}(x) ds(x)}$$

• Cortical thickness function in cingulate gyrus

• Group wise differences found between Schizophrenia and control subjects

contd…
Partitioning anatomical manifolds

- Recursively partition Freesurfer cortical labels using 2^{nd} eigenfunctions
- Mean cortical thickness in a partition as a signal feature
- Outperforms Freesurfer labels in an AD vs CN classification task

[Lebed thesis 2013]

contd...
Partitioning anatomical manifolds (4)

- Mandible shape modeling:
 - 100 level contours of the 2nd eigenfunctions
 - Connect centroids of level contours to get centerline
 - Length l_c and angle θ_c as shape features
- Regression model between shape features and age + gender.

[Seo 2011] contd…
Heat Kernels

• Initial value diffusion PDE on a manifold M:
 $$\frac{\partial u}{\partial t} = \Delta_M u, \quad u(x, 0) = f(x)$$

• $K_\sigma \ast f$ is the solution at $t = \frac{\sigma^2}{2}$ where:
 $$K_\sigma (x, y) = \sum_{j=0}^{\infty} e^{-\lambda_j \sigma} \psi_j(x)\psi_j(y)$$
Cortical thickness smoothing

- Iterative smoothing by decomposing into smaller band width kernels:

 $$K^{(k)}_\sigma \times f = K_{\sqrt{k}\sigma} \times f$$

- Assuming sufficiently small σ, discrete implementation is:

 $$\tilde{W}_\sigma \times f(p) = \sum_{i=0}^{m} \tilde{W}_\sigma(p, q_i) f(q_i)$$

 $$\tilde{W}_\sigma(p, q_i) = \frac{\exp\left(-\frac{||p-q_i||}{2\sigma^2}\right)}{\sum_{j=0}^{m} \exp\left(-\frac{||p-q_i||}{2\sigma^2}\right)}$$

[Chung 2005] Part of Freesurfer package
Solution using Laplacian eigen basis

- Finite eigenfunction expansion:
 \[f(x) \approx \sum_{j=0}^{k} \beta_j \psi_j(x) \]

- Estimate \(\beta_j \) via solving a least squares problem using iterative residual fitting algorithm

- Then, heat kernel smoothing is given by:
 \[K_\sigma * f(p) = \sum_{j=0}^{k} e^{-\lambda_j \sigma} \beta_j \psi_j(p) \]

• Mandible *shape* smoothed

[Chung 2011]
Smoothing on subcortical manifolds

- Heat kernel Smoothing implemented using the finite eigenfunction expansion approach
- Hippocampus and amygdala surfaces
- Shape and signal (surface displacements) were smoothed
- Regression model between displacements and age + gender
Open problems

• Richer measures to capture cortical structure beyond thickness?

[Chung 2005]

www.frontalcortex.com

www.frontalcortex.com

atlassnc.uniurb.it

www.frontalcortex.com

contd...
• Shape features for vasculature in the retina?

Speckle variance optical coherence tomography (OCT) images of retina in the eye