Rigidity for grid-like reflection frameworks

Derek Kitson

Lancaster University

Advances in Combinatorial and Geometric Rigidity BIRS, 13-17th July 2015

Problem: Given a framework (G,p) in X determine whether (G,p) is infinitesimally rigid (or isostatic) in $(X,\|\cdot\|)$.

Problem: Given a framework (G,p) in X determine whether (G,p) is infinitesimally rigid (or isostatic) in $(X,\|\cdot\|)$.

Questions to consider

Which motions are considered trivial?

Problem: Given a framework (G,p) in X determine whether (G,p) is infinitesimally rigid (or isostatic) in $(X,\|\cdot\|)$.

Questions to consider

- Which motions are considered trivial?
- What form does the infinitesimal flex condition take?

Problem: Given a framework (G,p) in X determine whether (G,p) is infinitesimally rigid (or isostatic) in $(X, \|\cdot\|)$.

Questions to consider

- Which motions are considered trivial?
- What form does the infinitesimal flex condition take?
- Is infinitesimal rigidity a generic property?

The rigidity map for G = (V, E) and $(X, \|\cdot\|)$ is defined by,

$$f_G: X^{|V|} \to \mathbb{R}^{|E|}, \quad (x_v)_{v \in V} \mapsto (\|x_v - x_w\|)_{vw \in E}.$$

An infinitesimal flex for (G,p) is a vector $u \in X^{|V|}$ such that

$$\lim_{t \to 0} \frac{1}{t} (f_G(p + tu) - f_G(p)) = 0.$$

The rigidity map for G = (V, E) and $(X, \|\cdot\|)$ is defined by,

$$f_G: X^{|V|} \to \mathbb{R}^{|E|}, \quad (x_v)_{v \in V} \mapsto (\|x_v - x_w\|)_{vw \in E}.$$

An infinitesimal flex for (G,p) is a vector $u\in X^{|V|}$ such that

$$\lim_{t \to 0} \frac{1}{t} (f_G(p + tu) - f_G(p)) = 0.$$

 $\mathcal{F}(G,p) \coloneqq \text{vector space of all infinitesimal flexes of } (G,p).$

 $\mathcal{T}(G,p) \coloneqq \text{vector subspace of all trivial infinitesimal flexes.}$

A framework (G,p) is infinitesimally rigid if $\mathcal{F}(G,p)=\mathcal{T}(G,p)$.

A norm on a real vector space X is a function $\|\cdot\|: X \to \mathbb{R}$ which satisfies the conditions

- (i) $||x|| \ge 0$ for all $x \in X$, and, ||x|| = 0 if and only if x = 0.
- (ii) $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in X$ and all $\lambda \in \mathbb{R}$.
- (iii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

Eg. some norms on \mathbb{R}^d ,

- $\|x\|_p = \left(\sum_{i=1}^d |x_i|^p\right)^{\frac{1}{p}}, \ 1$
- $\|x\|_1 = \sum_{i=1}^d |x_i| \text{ and } \|x\|_{\infty} = \max_{i=1,2,\dots,d} |x_i|$

The flex condition:

 $\blacktriangleright \ell^2$ norm,

$$(p_v - p_w) \cdot (u_v - u_w) = 0, \quad \forall \, vw \in E$$

The flex condition:

 $ightharpoonup \ell^2$ norm,

$$(p_v - p_w) \cdot (u_v - u_w) = 0, \quad \forall \, vw \in E$$

 $ightharpoonup \ell^q$ norms, $1 < q < \infty$,

$$(p_v - p_w)^{(q-1)} \cdot (u_v - u_w) = 0, \quad \forall \, vw \in E$$

where
$$x^{(q-1)} := (\operatorname{sgn}(x_1)|x_1|^{q-1}, \dots, \operatorname{sgn}(x_d)|x_d|^{q-1}).$$

The flex condition:

 \triangleright ℓ^2 norm,

$$(p_v - p_w) \cdot (u_v - u_w) = 0, \quad \forall \, vw \in E$$

 $ightharpoonup \ell^q$ norms, $1 < q < \infty$,

$$(p_v - p_w)^{(q-1)} \cdot (u_v - u_w) = 0, \quad \forall \, vw \in E$$

where
$$x^{(q-1)} := (\operatorname{sgn}(x_1)|x_1|^{q-1}, \dots, \operatorname{sgn}(x_d)|x_d|^{q-1}).$$

polyhedral norms,

$$\hat{F}_{vw} \cdot (u_v - u_w) = 0, \quad \forall \, vw \in E$$

where F_{vw} is an associated facet of the unit ball.

$$\varphi_{v,w}(u_v - u_w) = 0, \quad \forall \, vw \in E$$

where $\varphi_{v,w}:X\to\mathbb{R}$ is the linear functional,

$$\varphi_{v,w}(x) := \lim_{t \to 0} \frac{1}{t} (\|p_v - p_w + tx\| - \|p_v - p_w\|).$$

$$\varphi_{v,w}(u_v - u_w) = 0, \quad \forall \, vw \in E$$

where $\varphi_{v,w}:X\to\mathbb{R}$ is the linear functional,

$$\varphi_{v,w}(x) := \lim_{t \to 0} \frac{1}{t} (\|p_v - p_w + tx\| - \|p_v - p_w\|).$$

Note:

$$\varphi_{v,w}(u_v - u_w) = 0, \quad \forall \, vw \in E$$

where $\varphi_{v,w}:X\to\mathbb{R}$ is the linear functional,

$$\varphi_{v,w}(x) := \lim_{t \to 0} \frac{1}{t} (\|p_v - p_w + tx\| - \|p_v - p_w\|).$$

Note:

- $\varphi_{v,w}(p_v p_w) = ||p_v p_w||.$

$$\varphi_{v,w}(u_v - u_w) = 0, \quad \forall \, vw \in E$$

where $\varphi_{v,w}:X\to\mathbb{R}$ is the linear functional,

$$\varphi_{v,w}(x) := \lim_{t \to 0} \frac{1}{t} (\|p_v - p_w + tx\| - \|p_v - p_w\|).$$

Note:

- ▶ $\sup_{\|x\| \le 1} |\varphi_{v,w}(x)| = 1.$
- $ightharpoonup arphi_{v,w}$ is a support functional for $rac{p_v-p_w}{\|p_v-p_w\|}.$

If the rigidity map f_G is differentiable at p then

(i)
$$df_G(p)u = (\varphi_{v,w}(u_v - u_w))_{vw \in E}$$
 for all $u \in X^{|V|}$.

If the rigidity map f_G is differentiable at p then

(i)
$$df_G(p)u = (\varphi_{v,w}(u_v - u_w))_{vw \in E}$$
 for all $u \in X^{|V|}$.

(ii)
$$\mathcal{F}(G,p) = \ker df_G(p)$$
.

If the rigidity map f_G is differentiable at p then

(i)
$$df_G(p)u = (\varphi_{v,w}(u_v - u_w))_{vw \in E}$$
 for all $u \in X^{|V|}$.

- (ii) $\mathcal{F}(G,p) = \ker df_G(p)$.
- (iii) (G,p) is infinitesimally rigid if and only if

$$\operatorname{rank} df_G(p) = (\dim X)|V| - \dim \mathcal{T}(G, p).$$

If the rigidity map f_G is differentiable at p then

(i)
$$df_G(p)u = (\varphi_{v,w}(u_v - u_w))_{vw \in E}$$
 for all $u \in X^{|V|}$.

- (ii) $\mathcal{F}(G,p) = \ker df_G(p)$.
- (iii) (G,p) is infinitesimally rigid if and only if

$$\operatorname{rank} df_G(p) = (\dim X)|V| - \dim \mathcal{T}(G, p).$$

(Assume f_G is differentiable at p from here on...).

Problem: Given a framework (G,p) in $(X, \|\cdot\|)$ with symmetry group Γ , determine whether the framework is rigid (or isostatic) in $(X, \|\cdot\|)$.

Problem: Given a framework (G,p) in $(X,\|\cdot\|)$ with symmetry group Γ , determine whether the framework is rigid (or isostatic) in $(X,\|\cdot\|)$.

Questions to consider

Which symmetry groups are possible?

Problem: Given a framework (G,p) in $(X,\|\cdot\|)$ with symmetry group Γ , determine whether the framework is rigid (or isostatic) in $(X,\|\cdot\|)$.

Questions to consider

- Which symmetry groups are possible?
- How does the rigidity operator decompose?

Problem: Given a framework (G,p) in $(X,\|\cdot\|)$ with symmetry group Γ , determine whether the framework is rigid (or isostatic) in $(X,\|\cdot\|)$.

Questions to consider

- Which symmetry groups are possible?
- How does the rigidity operator decompose?
- ▶ What can be deduced from the gain graph G/Γ ?

Decomposition into symmetric and anti-symmetric parts:

Proposition

If (G, p) is \mathbb{Z}_2 -symmetric in $(X, \|\cdot\|)$ then,

- (i) $df_G(p) = R_1 \oplus R_2$.
- (ii) $\mathcal{F}(G,p) = \mathcal{F}_1(G,p) \oplus \mathcal{F}_2(G,p)$.
- (iii) $\mathcal{T}(G,p) = \mathcal{T}_1(G,p) \oplus \mathcal{T}_2(G,p)$.

$$F = \{x \in \mathcal{P} : x \cdot \hat{F} = 1\}.$$

$$F = \{ x \in \mathcal{P} : x \cdot \hat{F} = 1 \}.$$

The support functional for $\frac{p_v-p_w}{\|p_v-p_w\|_{\mathcal{P}}}$ satisfies,

$$\varphi_{v,w}(x) = \hat{F} \cdot x, \quad \forall \ x \in X,$$

where F is the unique facet of \mathcal{P} which contains $\frac{p_v - p_w}{\|p_v - p_w\|_{\mathcal{P}}}$.

$$F = \{ x \in \mathcal{P} : x \cdot \hat{F} = 1 \}.$$

The support functional for $\frac{p_v-p_w}{\|p_v-p_w\|_{\mathcal{P}}}$ satisfies,

$$\varphi_{v,w}(x) = \hat{F} \cdot x, \quad \forall \ x \in X,$$

where F is the unique facet of \mathcal{P} which contains $\frac{p_v - p_w}{\|p_v - p_w\|_{\mathcal{P}}}$.

The edge $vw \in E$ is said to have framework colour [F].

$$F = \{ x \in \mathcal{P} : x \cdot \hat{F} = 1 \}.$$

The support functional for $\frac{p_v - p_w}{\|p_v - p_w\|_{\mathcal{P}}}$ satisfies,

$$\varphi_{v,w}(x) = \hat{F} \cdot x, \quad \forall \ x \in X,$$

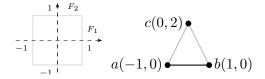
where F is the unique facet of \mathcal{P} which contains $\frac{p_v - p_w}{\|p_v - p_w\|_{\mathcal{P}}}$.

The edge $vw \in E$ is said to have framework colour [F].

Denote by G_F the monochrome subgraph of G spanned by edges $vw \in E$ with framework colour [F].

Theorem (K - Power, 2014)

A grid-like framework (G,p) is isostatic if and only if the induced monochrome subgraphs G_{F_1} and G_{F_2} are both spanning trees in G.



Let $G_0 = G/\mathbb{Z}_2$ denote the quotient graph.

Let $G_0 = G/\mathbb{Z}_2$ denote the quotient graph.

An edge [e] in the quotient graph G_0 is said to have framework colour [F] if e (equivalently, -e) has framework colour [F] in G.

Let $G_0 = G/\mathbb{Z}_2$ denote the quotient graph.

An edge [e] in the quotient graph G_0 is said to have framework colour [F] if e (equivalently, -e) has framework colour [F] in G.

Define $G_{F,0}$ to be the monochrome subgraph of G_0 spanned by edges [e] with framework colour [F].

Let $G_0 = G/\mathbb{Z}_2$ denote the quotient graph.

An edge [e] in the quotient graph G_0 is said to have framework colour [F] if e (equivalently, -e) has framework colour [F] in G.

Define $G_{F,0}$ to be the monochrome subgraph of G_0 spanned by edges [e] with framework colour [F].

A subgraph of G_0 for which every connected component contains exactly one cycle, each of which is unbalanced, is called an unbalanced map graph in G_0 .

Theorem (Symmetrically isostatic frameworks)

Let (G,p) be a grid-like reflection framework with $G \neq K_2$. If the reflection acts freely on V then TFAE:

- (i) (G, p) is symmetrically isostatic.
- (ii) $G_{F_1,0}$ is an unbalanced spanning map graph in G_0 and $G_{F_2,0}$ is a spanning tree in G_0 .

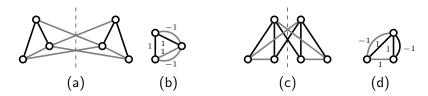


Figure: A symmetrically isostatic (but not anti-symmetrically isostatic) reflection framework in $(\mathbb{R}^2,\|\cdot\|_\infty)$ (a) and its signed quotient graph (G_0,ψ) (b). An anti-symmetrically isostatic (but not symmetrically isostatic) reflection framework in $(\mathbb{R}^2,\|\cdot\|_\infty)$ (c) with the same signed quotient graph (G_0,ψ) .

Corollary (Rigid frameworks with reflectional symmetry)

Let (G,p) be a grid-like reflection framework with $G \neq K_2$. If the reflection acts freely on V then TFAE:

- (i) (G,p) is rigid.
- (ii) G_0 contains a spanning subgraph H_0 such that the monochrome subgraphs $H_{F_1,0}$ and $H_{F_2,0}$ are both connected unbalanced spanning map graphs.

Questions to consider

Are there combinatorial characterisations?

Questions to consider

- Are there combinatorial characterisations?
- Are there inductive constructions?

Questions to consider

- Are there combinatorial characterisations?
- Are there inductive constructions?

Problem: Given a graph G and a group action $\theta: \Gamma \to \operatorname{Aut}(G)$, determine whether there exists $p \in X^{|V|}$ and a representation $\tau: \Gamma \to \operatorname{Isom}(X, \|\cdot\|)$ such that (G, p) is rigid in $(X, \|\cdot\|)$ and Γ -symmetric (w.r.t. θ and τ).

Theorem (DK - B Schulze, 2014)

Let $\theta: \mathbb{Z}_2 \to \operatorname{Aut}(G)$ be a group action on G where $\mathbb{Z}_2 = \langle s \rangle$. TFAE:

- (i) There exists p such that (G, p) is an isostatic grid-like framework with reflectional symmetry.
- (ii) G is a union of two edge-disjoint spanning trees, both of which are \mathbb{Z}_2 -symmetric with respect to θ , and $|E_s| = 0$.

Theorem (Symmetrically isostatic graphs)

Let G be a \mathbb{Z}_2 -symmetric graph. If the action is free on V then TFAE:

- (i) There exists p such that (G,p) is a symmetrically isostatic grid-like framework with reflectional symmetry.
- (ii) The gain graph (G_0, ψ) is (2, 2, 1)-gain tight.

- D.K., S.C. Power, Infinitesimal rigidity for non-Euclidean bar-joint frameworks, Bull. Lond. Math. Soc. 46 (2014), no. 4, 685-697.
- D.K., Finite and infinitesimal rigidity with polyhedral norms, Discrete Comput. Geom. (2015)
- D.K., B. Schulze, Maxwell-Laman counts for bar-joint frameworks in normed spaces, Linear Algebra Appl. 481 (2015), 313-329.
- ▶ D.K., S.C. Power, *The rigidity of infinite graphs*, arXiv:1310.1860 (2013)
- D.K., B. Schulze, Rigidity characterisations for graphs with two edge-disjoint symmetric spanning trees, arXiv:1408.4637 (2014)
- ▶ D.K., B. Schulze, *Motions of grid-like reflection frameworks*, preprint (2015)

Thank you

