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Infinitesimal rigidity

Let (X, ‖ · ‖) be a finite dimensional normed linear space.

Problem: Given a framework (G, p) in X determine whether (G, p)
is infinitesimally rigid (or isostatic) in (X, ‖ · ‖).

Questions to consider

I Which motions are considered trivial?

I What form does the infinitesimal flex condition take?

I Is infinitesimal rigidity a generic property?
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Infinitesimal rigidity

The rigidity map for G = (V,E) and (X, ‖ · ‖) is defined by,

fG : X |V | → R|E|, (xv)v∈V 7→ (‖xv − xw‖)vw∈E .

An infinitesimal flex for (G, p) is a vector u ∈ X |V | such that

lim
t→0

1

t
(fG(p+ tu)− fG(p)) = 0.

F(G, p) := vector space of all infinitesimal flexes of (G, p).

T (G, p) := vector subspace of all trivial infinitesimal flexes.

A framework (G, p) is infinitesimally rigid if F(G, p) = T (G, p).
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Reminder

A norm on a real vector space X is a function ‖ · ‖ : X → R which
satisfies the conditions

(i) ‖x‖ ≥ 0 for all x ∈ X, and, ‖x‖ = 0 if and only if x = 0.

(ii) ‖λx‖ = |λ|‖x‖ for all x ∈ X and all λ ∈ R.

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

Eg. some norms on Rd,

I ‖x‖p =
(∑d

i=1 |xi|p
) 1

p
, 1 < p <∞.

I ‖x‖1 =
∑d

i=1 |xi| and ‖x‖∞ = maxi=1,2,...,d |xi|

I ‖x‖P =

{
2|x1| if |x1| ≤ |x2|
|x1|+ |x2| if |x1| ≥ |x2|
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Flex conditions

The flex condition:

I `2 norm,

(pv − pw) · (uv − uw) = 0, ∀ vw ∈ E

I `q norms, 1 < q <∞,

(pv − pw)(q−1) · (uv − uw) = 0, ∀ vw ∈ E

where x(q−1) := (sgn(x1)|x1|q−1, . . . , sgn(xd)|xd|q−1).

I polyhedral norms,

F̂vw · (uv − uw) = 0, ∀ vw ∈ E

where Fvw is an associated facet of the unit ball.
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Flex conditions

The flex condition in general:

ϕv,w(uv − uw) = 0, ∀ vw ∈ E

where ϕv,w : X → R is the linear functional,

ϕv,w(x) := lim
t→0

1

t
(‖pv − pw + tx‖ − ‖pv − pw‖) .

Note:

I sup‖x‖≤1 |ϕv,w(x)| = 1.

I ϕv,w(pv − pw) = ‖pv − pw‖.
I ϕv,w is a support functional for pv−pw

‖pv−pw‖ .
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The rigidity operator

Proposition

If the rigidity map fG is differentiable at p then

(i) dfG(p)u = (ϕv,w(uv − uw) )vw∈E for all u ∈ X |V |.

(ii) F(G, p) = ker dfG(p).

(iii) (G, p) is infinitesimally rigid if and only if

rank dfG(p) = (dimX)|V | − dim T (G, p).

(Assume fG is differentiable at p from here on...).
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Symmetric frameworks

Problem: Given a framework (G, p) in (X, ‖ · ‖) with symmetry
group Γ, determine whether the framework is rigid (or isostatic) in
(X, ‖ · ‖).

Questions to consider

I Which symmetry groups are possible?

I How does the rigidity operator decompose?

I What can be deduced from the gain graph G/Γ?
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Z2-symmetric frameworks

Decomposition into symmetric and anti-symmetric parts:

Proposition

If (G, p) is Z2-symmetric in (X, ‖ · ‖) then,

(i) dfG(p) = R1 ⊕R2.

(ii) F(G, p) = F1(G, p)⊕F2(G, p).

(iii) T (G, p) = T1(G, p)⊕ T2(G, p).
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Polyhedral norms

If ‖ · ‖P is a polyhedral norm and F is a facet of the unit ball P
then there exists a unique extreme point F̂ in the polar set P4
such that

F = {x ∈ P : x · F̂ = 1}.

The support functional for pv−pw
‖pv−pw‖P satisfies,

ϕv,w(x) = F̂ · x, ∀ x ∈ X,

where F is the unique facet of P which contains pv−pw
‖pv−pw‖P .

The edge vw ∈ E is said to have framework colour [F ].

Denote by GF the monochrome subgraph of G spanned by edges
vw ∈ E with framework colour [F ].
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Polyhedral norms

Theorem (K - Power, 2014)

A grid-like framework (G, p) is isostatic if and only if the induced
monochrome subgraphs GF1 and GF2 are both spanning trees in G.

−1 1

1

−1

F2

F1

a(−1, 0)

c(0, 2)

b(1, 0)
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Polyhedral norms

Let (G, p) be a grid-like framework with reflectional symmetry and
suppose the reflection preserves framework colours.

Let G0 = G/Z2 denote the quotient graph.

An edge [e] in the quotient graph G0 is said to have framework
colour [F ] if e (equivalently, −e) has framework colour [F ] in G.

Define GF,0 to be the monochrome subgraph of G0 spanned by
edges [e] with framework colour [F ].

A subgraph of G0 for which every connected component contains
exactly one cycle, each of which is unbalanced, is called an
unbalanced map graph in G0.
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Polyhedral norms

Theorem (Symmetrically isostatic frameworks)

Let (G, p) be a grid-like reflection framework with G 6= K2. If the
reflection acts freely on V then TFAE:

(i) (G, p) is symmetrically isostatic.

(ii) GF1,0 is an unbalanced spanning map graph in G0 and GF2,0

is a spanning tree in G0.
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Polyhedral norms

(a)

1 1
1

−1

−1

(b) (c)

−11
−1 1

1

(d)

Figure: A symmetrically isostatic (but not anti-symmetrically isostatic)
reflection framework in (R2, ‖ · ‖∞) (a) and its signed quotient graph
(G0, ψ) (b). An anti-symmetrically isostatic (but not symmetrically
isostatic) reflection framework in (R2, ‖ · ‖∞) (c) with the same signed
quotient graph (G0, ψ).
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Polyhedral norms

Corollary (Rigid frameworks with reflectional symmetry)

Let (G, p) be a grid-like reflection framework with G 6= K2. If the
reflection acts freely on V then TFAE:

(i) (G, p) is rigid.

(ii) G0 contains a spanning subgraph H0 such that the
monochrome subgraphs HF1,0 and HF2,0 are both connected
unbalanced spanning map graphs.
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Polyhedral norms

Problem: Given a graph G determine whether there exists
p ∈ X |V | such that (G, p) is rigid (or isostatic) in (X, ‖ · ‖).

Questions to consider

I Are there combinatorial characterisations?

I Are there inductive constructions?

Problem: Given a graph G and a group action θ : Γ→ Aut(G),
determine whether there exists p ∈ X |V | and a representation
τ : Γ→ Isom(X, ‖ · ‖) such that (G, p) is rigid in (X, ‖ · ‖) and
Γ-symmetric (w.r.t. θ and τ).
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Existence of isostatic placements with reflectional symmetry

Theorem (DK - B Schulze, 2014)

Let θ : Z2 → Aut(G) be a group action on G where Z2 = 〈s〉.
TFAE:

(i) There exists p such that (G, p) is an isostatic grid-like
framework with reflectional symmetry.

(ii) G is a union of two edge-disjoint spanning trees, both of
which are Z2-symmetric with respect to θ, and |Es| = 0.
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Characterisations of rigidity with reflectional symmetry

Theorem (Symmetrically isostatic graphs)

Let G be a Z2-symmetric graph. If the action is free on V then
TFAE:

(i) There exists p such that (G, p) is a symmetrically isostatic
grid-like framework with reflectional symmetry.

(ii) The gain graph (G0, ψ) is (2, 2, 1)-gain tight.
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