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Multiple Access Channel (MAC)

e 2 sources transmit messages to a single destination.
e Each source transmits 1 message.
e The destination decodes all the messages.

Discrete Memoryless MAC (DM-MAC)

e Characterized by a transition matzjgfz‘ XX,

e Capacity regionCp; was derived by [Ahlswede, 1971] and
[Liao, 1972] in the early 1970s, which is the convex closure
of
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Weak Converse vs Strong Converse

e \Weak Converse

— For a fixed rate paifR;, R>), if the decoding error proba-
bility vanishes as the blocklength increases, thét, Ry) €
CAL-

— If the rate pair falls outsid€p, , then the decoding error is
bounded away from O as the blocklength increases.

J

e Strong Converse

— For a fixed rate paifRR{, Rs), if the decoding error probabil-
ity is upper bounded by some ¢ € (0, 1) as the blocklength
iIncreases, thefR;, Ry) € Ca .

— If the rate pair falls outsid€,; , then the decoding error
tendsto 1 as the blocklength increases.

e The original proofs in [Ahlswede, 1971] and [Liao, 1972] are
weak converse results.

e Strong converse was proved by
[Ahlswede, 1982].

[Dueck, 1981] and

Gaussian MAC

oY = X+ Xy + Z whereZ is a standard Gaussian noise.
e The codewordsy?" and X' should satisfy|| X7||> < nP; and
| X272 < nP, respectively.

e Capacity region was derived by
[Wyner, 1974].

[Cover, 1975] and
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R < %10g(1 + Pp),
Ry < $log(1+ P), .
Ri+ Ry < 5log(1+ P+ Py)
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e The proofs in [Cover, 1975] and [Wyner, 1974] are weak con-
verse results.

e Our contribution is a strong converse proof for the Gaussian
MAC.

Network Model

e Sources 1 and 2 transmit informationdan »n time slots:

— Each source choosed/V; to transmit. Messag#@/; Is uni-
formon{1,2,...,2"%} whereR; denotes the rate 6¥/;.

e Each source transmitsX;; ;. in time slotk and nodel receives
Yip =X+ Xop+ 2,

whereZ" aren i1.1.d. standard normal random variables.
e Power constraint’;: X should satisfy

mn
X722 3" X2 <nP.
k=1

e-Capacity Region

e A length-» code operating at rat¢l?;, R) is called an
(n, (Rq, R9), ep)-code if the average probability of decoding
error Is less than,, .

e (R, Ry) is e-achievable ifd a sequence ofn, (R, Ry),¢)-
codes such thaimsup,,_ . en < € .

e Defines-capacity region

C. = {(Rl, R9) € Ri (R1, Ro) IS e-achievabl%

Main Result

Theorem: For eacte € [0, 1),

Ce = Rew- (1)

Generalization to N sources: LetZ = {1,2,..., N} denote
the NV sources. For eache [0, 1),

ZRiS%log(leZPi) }
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Major Challenge of Proving the Theorem

e The first step of the proof is to convert the givarerage error
codeto amaximal error code by expurgating appropriate code
words. After the expurgation step, we neednanging tech-
nique to “wring out” the dependence betweén ;. and X, ;.

e After the wringing step, the proof can be completed by using
Augustin’s converse [Augustin, 1966], a well-known tool fo
establishing strong converses for the DMC as well as AWGN.

e For thediscrete-alphabet case, Ahlswede established a wring-
Ing technique in [Ahlswede, 1982] to prove the strong coswer
of the DM-MAC.

e However for the Gaussian case where the alphabenisnu-
ous, we cannot directly apply the wringing technique. Instead,

we need to quantize the codewords judiciously so that the de-

pendence betweel ;. andf(zjk (quantized versions) can be
wringed out. This is the main challenge.

Codebook Expurgation [Dueck, 1981]

e Construct anaximal error code from the givenaverage error

code by expurgating a frac:tim@zf8 of codewords, resulting In

maximal probability of decoding error less thanl%. The mes-

sages of the maximal error code are uniformly distributed on

someA C W; x Wh.
e Under the maximal error code,

l—¢
n(R1+R2)
Al 2 (2(1 -+ 5)) 2

and for eachiwy, w9) € A,

1 1 2(1 4+ ¢)
P, (w1, w2) = " < on(BitRy) ( 1 — ¢ )
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Codeword Quantizer

Let N > 0andA > 0, and let
ZnAan={-NA(=N+1A,...,NA} (2)

be a set o2V + 1 quantization points wher& specifies the quan-
tization precision. A scalar quantizer with domaaN A, NA]
and precisionA is the mappingy A : [-NA, NA] — Zy A

such that
x/AIA  0f x>0,
Qnalz) = L/ 8, .
lx/A]A otherwise.

In addition, define the scalar quantizer for a real-valugdetias

Q%”)A [=NA, NA]" — Z?VA such that

O\ (@) 2 (@ al21), Qv al2), -, Dy alzn))

I

Wringing Technique

e SUppose we are given tf(a, A, %)max-code constructed af-

ter the expurgation step. Then, there existganA’, 14<)
code with

—8(143¢) /[ n
A/ > (1—e¢) logn 1 — S 2”<R1+R2>
Alzn 2(1+¢)

max

such that the following holds: Lety, vy, x» xp y» denote the
distribution induced by thén, A’, 1<) -code. Let

Max

N

Xi' = Qrymp) 2&7),

define the alphabet

AN

X, = Ll /i A
for eachi € {1,2} and define

Py xp xp Xy (1 22, 815 82)
= pX?,XgL(ZC?fa 5) H 1 {93? = Q(n,/—nm %(93?)}
i€{1,2}

for all («7, 2%, 27, 4%) € &1 x Xy x &' x XY, Then there

exists a distribution: ¢, 1., such that for alk € {1,2,...,n}
1)<%2 R
and for allzy ;, 79 j, € &1 X Ay, we have
le 1 Xo k(:%l,kv 5%27]{)
| | (
logn A 1
< max < (1 + 4/ - ) H uf(z,k(xi’k)’ng} .
\ 7’6{172}
e Therefore, we can approximaﬂz%1 o by a product distribu-

tion Hie{l,Q} Uy through an inequality, which wrings out the
Independence b’etweéﬁlyk and Xy j. .
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