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Multiple Access Channel (MAC)

• 2 sources transmit messages to a single destination.

• Each source transmits 1 message.

• The destination decodes all the messages.

Discrete Memoryless MAC (DM-MAC)

• Characterized by a transition matrixqY |X1,X2

• Capacity regionCAL was derived by [Ahlswede, 1971] and
[Liao, 1972] in the early 1970s, which is the convex closure
of
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Weak Converse vs Strong Converse

• Weak Converse

– For a fixed rate pair(R1, R2), if the decoding error proba-
bility vanishes as the blocklength increases, then(R1, R2) ∈
CAL .

– If the rate pair falls outsideCAL , then the decoding error is
bounded away from 0 as the blocklength increases.

• Strong Converse

– For a fixed rate pair(R1, R2), if the decoding error probabil-
ity is upper bounded by some ε ∈ (0, 1) as the blocklength
increases, then(R1, R2) ∈ CAL .

– If the rate pair falls outsideCAL , then the decoding error
tends to 1 as the blocklength increases.

• The original proofs in [Ahlswede, 1971] and [Liao, 1972] are
weak converse results.

• Strong converse was proved by [Dueck, 1981] and
[Ahlswede, 1982].

Gaussian MAC

• Y = X1 +X2 + Z whereZ is a standard Gaussian noise.

• The codewordsXn
1 andXn

2 should satisfy‖Xn
1 ‖2 ≤ nP1 and

‖Xn
2 ‖2 ≤ nP2 respectively.

• Capacity region was derived by [Cover, 1975] and
[Wyner, 1974]:
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• The proofs in [Cover, 1975] and [Wyner, 1974] are weak con-
verse results.

• Our contribution is a strong converse proof for the Gaussian
MAC.

Network Model

• Sources 1 and 2 transmit information tod in n time slots:

– Each sourcei choosesWi to transmit. MessageWi is uni-
form on{1, 2, . . . , 2nRi} whereRi denotes the rate ofWi.

• Each sourcei transmitsXi,k in time slotk and noded receives

Yk = X1,k +X2,k + Zk ,

whereZn aren i.i.d. standard normal random variables.

• Power constraintPi: X
n
i should satisfy

‖Xn
i ‖2 ,

n
∑

k=1

X2
i,k ≤ nPi .

ε-Capacity Region

• A length-n code operating at rate(R1, R2) is called an
(n, (R1, R2), εn)-code if the average probability of decoding
error is less thanεn .

• (R1, R2) is ε-achievable if∃ a sequence of(n, (R1, R2), ε)-
codes such thatlim supn→∞ εn ≤ ε .

• Defineε-capacity region
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Main Result

Theorem: For eachε ∈ [0, 1),

Cε = RCW. (1)

Generalization to N sources: Let I , {1, 2, . . . , N} denote
theN sources. For eachε ∈ [0, 1),
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Major Challenge of Proving the Theorem

• The first step of the proof is to convert the givenaverage error
code to amaximal error code by expurgating appropriate code-
words. After the expurgation step, we need awringing tech-
nique to “wring out” the dependence betweenX1,k andX2,k.

• After the wringing step, the proof can be completed by using
Augustin’s converse [Augustin, 1966], a well-known tool for
establishing strong converses for the DMC as well as AWGN.

• For thediscrete-alphabet case, Ahlswede established a wring-
ing technique in [Ahlswede, 1982] to prove the strong converse
of the DM-MAC.

• However for the Gaussian case where the alphabet iscontinu-
ous, we cannot directly apply the wringing technique. Instead,
we need to quantize the codewords judiciously so that the de-
pendence between̂X1,k andX̂2,k (quantized versions) can be
wringed out. This is the main challenge.

Codebook Expurgation [Dueck, 1981]

• Construct amaximal error code from the givenaverage error
code by expurgating a fraction2ε1+ε of codewords, resulting in
maximal probability of decoding error less than1+ε2 . The mes-
sages of the maximal error code are uniformly distributed on
someA ⊂ W1 ×W2.

• Under the maximal error code,
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(

1− ε

2(1 + ε)

)

2n(R1+R2)

and for each(w1, w2) ∈ A,
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Codeword Quantizer

LetN > 0 and∆ > 0, and let

ZN,∆ , {−N∆, (−N + 1)∆, . . . , N∆} (2)

be a set of2N+1 quantization points where∆ specifies the quan-
tization precision. A scalar quantizer with domain[−N∆, N∆]
and precision∆ is the mappingΩN,∆ : [−N∆, N∆] → ZN,∆
such that

ΩN,∆(x) =

{

⌊x/∆⌋∆ if x ≥ 0,

⌈x/∆⌉∆ otherwise.

In addition, define the scalar quantizer for a real-valued tuple as

Ω
(n)
N,∆ : [−N∆, N∆]n → Z

n
N,∆ such that

Ω
(n)
N,∆(x

n) , (ΩN,∆(x1),ΩN,∆(x2), . . . ,ΩN,∆(xn))

Wringing Technique

• Suppose we are given the
(
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)
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such that the following holds: LetpW1,W2,Xn
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• Therefore, we can approximatep
X̂1,k,X̂2,k

by a product distribu-

tion
∏

i∈{1,2} uX̂i,k
through an inequality, which wrings out the

independence betweenX1,k andX2,k .
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