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Quantum Coding: Channels

e Quantum channel: completely positive trace-preserving linear map
N = Na_, g from (states on) A to (states on) B.

s

Assume A and B are finite-dimensional.

e The channel is memoryless:

AN N®n B"
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Quantum Coding: Encoder and Decoder

o Entanglement transmission code (for N®"):

Cn - {dnvgn,Dn) .

@ code size d,:
e M, M', M" of dimension d,.

e maximally entangled state M
1 &
Oy = —— N @ [ -
|#) mma \/d—n;HM 1) m B)
® encoder &,: quantum channel from M
M’ to A",

© decoder D,: quantum channel
from B" to M".

3/19



Quantum Coding: Encoder and Decoder

o Entanglement transmission code (for N®"):

Cn - {dnvgnapn) .

@ code size d,:

— A
o M, M', M" of dimension dj. !
e maximally entangled state
d M — — A
1 & .
&) mmr *\/T—HEMM@")M’- &,

® encoder &,: quantum channel from
M’ to A", A
© decoder D,: quantum channel "

from B" to M”.
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Quantum Coding: Encoder and Decoder

o Entanglement transmission code (for N®"):

Cn - {dnvgnapn) .

@ code size d,:

e M, M’, M" of dimension d,. B

e maximally entangled state

1 dn Bz ] _M”
|6 panar :\/7—";|'>M®\')M'- ‘ D,
® encoder &,: quantum channel from
M’ to A",
B, —

© decoder D,,: quantum channel

from B" to M”.
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Quantum Coding: Entanglement Fidelity

M
o) AL 1B
M’ Az IN; B, m"
En . Dn
A, IN; B,

o Fidelity with maximally entangled state:

F(Ca NO) = tr (D o N®" 0 &) (dran ) oranr )



Quantum Capacity

e A triple (R, n,€) is achievable on N if 3 C, with
1
- logd, > R, and F(C,N®")>1—¢.
e Boundary of (non-asymptotic) achievable region:
R(n;e,N) := max{R : (R, n,e) is achievable on A }.

e The quantum capacity, Q(N'), is the rate at which qubits can be
transmitted with fidelity approaching one asymptotically.

Q-(NV) := lim R(me,N), e€(0,1)

n—oo

Q) = lim Q-(N).
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Quantum Capacity Theorem

e Barnum, Nielsen and Schumacher (1996-2000) as well as Lloyd,
Shor and Devetak (1997-2005) established

QWN) = lim 1IC(./\/W), where

=00 ¥

l(N) = max{-H(AIB).}, was = Na—e(a)

e This result is unsatisfactory for many reasons:
@ It is not a single-letter formula.
@ The limit £ — oo is necessary in general (Cubitt et al.'14).
© It cannot be calculated except for e.g. degradable channels which
satisfy I.(N®") = nl(N).
@ We do not know anything about Q.(/N\).
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Capacity and Strong Converse

e What we would like to know:

10

0.8

capaoty QW)

achievable <— ‘

Y 06 ~
B R(n; e, N') = QNV) + o(1)
o
=]
= 04 — forbidden
4

021 n— 0o

02 04 06 o8 10

rate: R(n;e,N)

9/19



State of the Art

o Until this work, the strong converse property could only be
established for some channels with trivial capacity.

e Morgan and Winter showed that degradable quantum channels
satisfy a “pretty strong” converse:

Q.-(N) = QW) foralle e (o, %)

(Extending their proof to all ¢ € (0,1) appears difficult.)

e Strong converse rates are known, for example the
entanglement-assisted capacity established via channel simulation
(Bennett et al.)

e However, they are not tight except for trivial channels.

A lot of (fundamental) work still needs to be donel!
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Result 1: Rains Entropy is Strong Converse Rate

e The Rains relative entropy of the channel is defined as

R H , p
R(N) o n;ax oaBE lrg:iligs(A:B) D(NA _>B(,(/)A/A) H UAB) ’

o A state oap € Rains(A : B) (cf. Rains'99) satisfies

1
tr (¢ABUAB) < 5 V maximally entangled ¢ 5.

Theorem

For any channel N', communication at a rate exceeding R(N') implies
(exponentially) vanishing fidelity.

o Key Idea: Consider correlations oap that are useless for quantum
communication. Classically:

C(W) =max min D(Px x Wy x||Qx x Qy).

x  Qx,Qy
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Step 1: Arimoto-Type (One-Shot) Converse Bound

Following Sharma—Warsi'13 ...
Consider C = {d, &, D} for N with F(C,N) > 1 —e.
Test if a state is g7, Or not:

T() = plO)O| + (1 = p)[INL|,  p = tr(Pnmr - ).

Let pam = E(Pmmr). Due to data-processing, we have

Do(N (pam)lloam) = Do (T 0D o N(pam)|| T © D(ogs))

> logd + — - log(1 - <),

«

for Rényi divergence with oo > 1
Sandwiched Rényi divergence (Lennert et al., Wilde et al.'13):

~ 1 . e
Da(pHU) = a—1 |0gtr ((UIZTpglzT) ) .
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Step 2: Asymptotics

e Minimizing oag € Rains(A : B) and optimizing over codes:

Lemma

We have the following one-shot converse:
1

R(1;&,N') < maxmin Do(Na (144 )|oas) + 1-e
PA OAB a—1

alog

e This yields an upper bound on the e-capacity:

Q-(N) < limsup 1 max min D, (NE (Yo pm)

n—oo N pan cangn

‘O’Aan) .

Ra(N@n)

o It remains to show that R, () satisfies an asymptotic sub-additivity
property, i.e. Ry(N®") < nRy(N) + o(n).
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Step 3: Covariant Channels and Permutations

e Covariance group of the channel N: Group G with unitary
representations U and Vg such that

Naoe(Ua(g)(-)Ui(g)) = Va(g)Nase(-)Vi(g) VeeG

Lemma (Channel Covariance)

Let G be a covariance group of N'. Then,

Ra(N) = maxmin D, (Na—e(¥ha)

PA OA

| oa8)

where pa = Ua(g)pa Uj\(g), i.e. pa is invariant under G.

e Covariance group of A'®" always contains permutations S,,.

e Thus, we can restrict the optimization in Ry(N®") to permutation
invariant states pan.
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Step 4: Asymptotic Sub-Additivity

Employ the fact that wf\nA,n is in the symmetric subspace:

p mm 2 n
Van < Parge” < 0l /du(ﬂ) O2R -

e The quantum way to restrict to product states in the converse.

This allows us to show (skipping a few technical steps) that

ﬁa(J\/'@”) < nﬁa(J\/') + O(log(n)).

Hence, Q-(NV) < Ro(N) for all > 1.
e And, thus, by continuity as @ — 1, we find Q-(N) < R(N).

A more detailed analysis reveals that the fidelity converges
exponentially fast to 0 for any d > R(N).
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Result 2: Dephasing Channels Satisfy Strong Converse

e For all quantum channels we thus have
Ie(N) < QW) < Q:(N) < R(N)

for all € € (0,1).

Theorem
For generalized dephasing channels Z, we have I.(Z) = R(Z). }

e The inequalities collapse and Q-(Z) = Q(Z).

e Includes qubit dephasing channel:

Zyipo (L= ANp+AZpZ.
(jf Z) ~ ((1 —;)\)CT . _bzA)C>
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Result 3: Second Order Converse

Theorem

If the covariance group of N is irreducible on A, then

n

R(ne, N') < RWN) + Md,—l(eﬂ_ 0 <|oin>

Moreover, equality holds if N is also dephasing.

e V(N)is (Rains) quantum channel dispersion. Here,

R(N) = min  D(Na—s(¢ha) || oa8).

oaB€ Rains(A:B)

VIN) = V(Nas(¢a) || oa8) -

with V(pllo) = tr (p(log p — log 0)?) — D(p||o)>.
e & is cumulative (normal) Gaussian distribution function.
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Non-Asymptotical Achievable Region for Qubit Dephasing

0.6¢
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= [ exact outer bound
0-1:’ * exact inner bound
0 20 40 60 8 100 120

number of channel uses, n

e Dephasing channel: v = 0.1 and fixed fidelity 1 — ¢ = 95%.
e Corresponds to classical binary symmetric channel.
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Qubit Depolarizing Channel

0.6.

05/

o
»

upper bound on capacity
outer bound (3*9 order)

coherent information

rate, ,‘A?(n; €)
o
w

exact outer bound

o
[
T

No = 4
50 100

number of channel uses, n

o
N
e
4---"-~ ’

50 200

o Depolarizing channel: p— (1 —a)p+ $(XpX + YpY + ZpZ).

e Exact outer bound for av = 0.0825 and € = 5.5%.
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