The extended and generalized rank weight enumerator

Relinde Jurrius (joint work with Ruud Pellikaan)

University of Neuchâtel, Switzerland

Mathematics of Communications January 27, 2015

Idea: send (rows of) matrices instead of vectors

Send: $X_1, \dots, X_m \in \mathbb{F}_q^n$

Receive: $Y_1, \ldots, Y_m \in \mathbb{F}_q^n$

No errors: Y = AX

A full rank, known from the network structure

In practice: Y = A'X + Z

A' rank erasures

Z errors

Decoding possible if rk(A') not too small and rk(Z) not too big.

Rank metric: $d(X, Y) = \operatorname{rk}(X - Y)$

 $\mathbb{F}_{q^m}/\mathbb{F}_q$ field extension with basis α_1,\ldots,α_m .

Write $c = c_1 \alpha_1 + \ldots + c_m \alpha_m$.

Rank metric code is subspace of $\mathbb{F}_{q}^n \leftrightarrow$ subspace of $\mathbb{F}_{q}^{m \times n}$.

q-Analogues

$$\begin{array}{ccc} n & \frac{q^n-1}{q-1} \\ \text{finite set} & \mathbb{F}_q^n \\ \text{subset} & \text{subspace} \\ \text{intersection} & \text{intersection} \\ \text{union} & \text{sum} \\ \text{size} & \text{dimension} \\ \binom{n}{k} & \binom{n}{k}_q \end{array}$$

From *q*-analogue to 'normal': let $q \rightarrow 1$.

C linear code

$$supp(c) = coordinates of c that are non-zero$$

 $wt_{H}(c) = size of support$

Weight enumerator

$$W_C(X,Y) = \sum_{w=0}^n A_w X^{n-w} Y^w$$

with $A_w =$ number of words of weight w.

C rank metric code

Rsupp(
$$\mathbf{c}$$
) = row space of $m(\mathbf{c})$
wt_R(\mathbf{c}) = dimension of support

Rank weight enumerator

$$W_C^R(X,Y) = \sum_{w=0}^n A_w^R X^{n-w} Y^w$$

with A_w^R = number of words of rank weight w.

J subset of [n]

$$C(J) = \{ \mathbf{c} \in C : \mathsf{supp}(\mathbf{c}) \subseteq J^{\mathbf{c}} \}$$

Lemma C(J) is a subspace of \mathbb{F}_q^n

$$I(J) = \dim_{\mathbb{F}_q} C(J)$$

J subspace of \mathbb{F}_q^n

$$C(J) = \{ \mathbf{c} \in C : \mathsf{Rsupp}(\mathbf{c}) \subseteq J^{\perp} \}$$

Lemma C(J) is a subspace of $\mathbb{F}_{q^m}^n$

$$I(J) = \dim_{\mathbb{F}_{a^m}} C(J)$$

$$B_{I} = |C(J)| - 1 = q^{I(J)} - 1$$

$$B_t = \sum_{|J|=t} B_J$$

Lemma

$$B_t = \sum_{w=0}^{n} \binom{n-w}{t} A_w$$

Determining $W_C(X,Y) \longleftrightarrow$ determining I(J) for all $J \subseteq [n]$

$$B_J^R = |C(J)| = q^{m \cdot I(J)}$$

$$B_t^R = \sum_{\dim J = t} B_J^R$$

Lemma

$$B_t^R = \sum_{w=0}^n {n-w \brack t}_a A_w^R$$

Determining $W_C^R(X,Y) \longleftrightarrow$ determining I(J) for all $J \subseteq \mathbb{F}_q^n$

$D \subseteq C$ subcode

 $supp(D) = union of supp(d) for all d \in D$ $wt_H(D) = size of support$

Generalized weight enumerators

For all $0 < r < \dim C$:

$$W_C^r(X,Y) = \sum_{w=0}^n A_w^r X^{n-w} Y^w$$

with $A_w^r =$ number of subcodes of dimension r and weight w.

$D \subseteq C$ subcode

$$\mathsf{Rsupp}(D) = \mathsf{sum} \ \mathsf{of} \ \mathsf{Rsupp}(\mathbf{d}) \ \mathsf{for} \ \mathsf{all} \ \mathbf{d} \in D$$
 $\mathsf{wt}_R(D) = \mathsf{dimension} \ \mathsf{of} \ \mathsf{support}$

Generalized rank weight enumerators

For all $0 < r < \dim C$:

$$W_C^{R,r}(X,Y) = \sum_{n=0}^{n} A_w^{R,r} X^{n-w} Y^w$$

with $A_w^{R,r}$ = number of subcodes of dimension r and rank weight w

 $\mathbb{F}_{a^e}/\mathbb{F}_a$ field extension

Extension code $C \otimes \mathbb{F}_{q^e}$: code over \mathbb{F}_{q^e} generated by words of C.

Extended weight enumerator

$$W_C(X,Y,T) = \sum_{n=1}^{n} A_w(T) X^{n-w} Y^n$$

with $A_w(T)$ polynomial such that $A_w(q^e)$ = number of words of weight w in $C \otimes \mathbb{F}_{q^e}$.

 $\mathbb{F}_{q^{me}}/\mathbb{F}_{q^m}$ field extension

Extension code $C \otimes \mathbb{F}_{q^{me}}$: code over $\mathbb{F}_{q^{me}}$ generated by words of C.

Extended rank weight enumerator

$$W_C^R(X,Y,T) = \sum_{n=1}^{n} A_w^R(T) X^{n-w} Y^n$$

with $A_w^R(T)$ polynomial such that $A_w^R(q^{me})$ = number of words of rank weight w in $C \otimes \mathbb{F}_{q^{me}}$.

Determining extended weight enumerator

$$\longleftrightarrow$$

Determining generalized weight enumerators

$$\longleftrightarrow$$

Determining I(J) for all $J \subseteq [n]$

Determining extended rank weight enumerator

$$\longleftrightarrow$$

Determining generalized rank weight enumerators

$$\longleftrightarrow$$

Determining I(J) for all $J \subseteq \mathbb{F}_q^n$

Work in progress:

generalize to codes over arbitrary fields

Linear codes are subspaces of K^n Hamming distance is still a metric Work in progress:

generalize to codes over arbitrary fields

Rank metric codes over cyclic field extension L/KRank distance is still a metric (Augot, Loidreau, Robert)

Example

Hyperplane arrangement and characteristic polynomial $\chi(\mathcal{T})$

Complement of arrangement is a polynomial-count variety $\chi(T)$ is a counting polynomial

Weight enumeration is like counting in hyperplane arrangement:

 $c_j = 0 \iff \mathbf{m}$ in hyperplane orthogonal to j-th column of G

Plesken, Bächler: Counting polynomials for linear codes $\rightsquigarrow A_w(T)$

For (extended) rank weight enumerator:

- 1. Find the right variety.
- 2. Prove it is a polynomial-count variety.
- 3. Find the right counting polynomial.
- 1 and 3 follow from before; 2 is more difficult

Thank you for your attention.

PS: We're hiring!
PhD student or postdoc in distributed storage systems