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1 Overview
Modern society depends crucially on the ability to store and transmit large amounts of digital information at
high speed. Satellite communication, movies on demand, portable music players, flash drives, and cellphones
all rely on the mathematical theory of coding to ensure that the original images, speech, music, or data can
be recovered perfectly even if mistakes are introduced during storage or transmission [2], [27]. As coding
theory has developed over the last 65 years, deep connections with the theory of combinatorial designs [1],
[3], [7] and with sequences [18] [20], have been discovered. Emerging applications continually lead to new
problems of codes, designs and sequences; conversely, new theoretical developments in these areas enable
novel applications [8].

The workshop brought together representatives of the applied and theoretical communities that study the
mathematics of communications, working in Mathematics, Computer Science, and Engineering departments,
in order to promote new linkages and collaborations. Among the participants were four graduate students
and two postdoctoral fellows. Five speakers gave extended expository lectures, accessible to all participants,
with an emphasis on methods, approaches, and open questions. Nineteen speakers gave contributed talks on
a range of theoretical and practical topics. A panel discussion gave participants an opportunity to reflect on
the entire workshop and to assess future research directions. Throughout these events, as well as in numerous
individual interactions, participants exchanged information and ideas about both theoretical and practical
aspects, and identified new connections between the principal objects of study.

2 Presentations

Codes and Designs
Tuvi Etzion opened the workshop with a wide-ranging expository talk illustrating many of the deep connec-
tions between coding theory and design theory. His examples included classical connections between perfect
codes, Steiner systems, maximum distance separable (MDS) codes, and projective geometries, as well as
modern applications of codes and designs in write-once memory [32], network coding [31], and distributed
storage. Etzion emphasized throughout that, despite considerable recent progress, major open problems re-
main.
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Coding Theory and Patent Law
Jim Davis gave a fascinating account of his role as a testifying expert in 2012, in one of the more than fifty
patent lawsuits fought in multiple jurisdictions between Apple and Samsung over third generation wireless
technology. The disputed patent [23] describes a method for transmitting multiple services simultaneously
and correctly, and is essential to an international standard that ensures wireless devices can interoperate. The
technical heart of the patent centres on a specific subcode of the second order Reed-Muller code of length
32. Davis described how academic questions of coding theory intersected with patent law, against a backdrop
of intense global competition in the mobile communications market. The dispute culminated in 2013 in
President Obama’s overturning of an International Trade Commission ban on the import of certain models of
Apple products into the U.S., which was the first time a U.S. President had vetoed such a ban in more than
25 years [29].

Sequences
Maximal linear recursive sequences (m-sequences) are used extensively in digital communications and re-
mote sensing because of their favorable correlation properties [17]. Excluding trivial cases, the cross-
correlations of a pair of m-sequences must take at least three distinct values. An equivalent formulation
is that the dual of a cyclic error-correcting code with two primitive zeroes must have at least three nonzero
weights. Until recently, only ten infinite families of m-sequence pairs attaining the minimum number (three)
of distinct values were known. Daniel Katz (with P. Langevin) established the existence of an eleventh such
family [21], and so proved a 2001 conjecture due to Dobbertin, Helleseth, Kumar, and Martinsen [11]. Katz’s
talk was the first public lecture describing this result, and Tor Helleseth was present as one of the workshop
participants. In his talk, delivered very effectively on a chalkboard, Katz gave a careful overview of the study
of m-sequences before outlining the proof of the conjecture involving trilinear forms, enumeration of points
on curves via multiplicative character sums, and divisibility properties of Gauss sums.

A linear feedback shift register (LFSR) is a physical device for generating sequences over a finite field,
including m-sequences. A transformation shift register is a generalization of an LFSR that confers practical
advantages when used in a stream cipher. Whereas the number of irreducible LFSRs over a finite field is
well known, the number of irreducible transformation shift registers in general is not. Daniel Panario’s talk
examined this counting question for irreducible transformation shift registers, giving an asymptotic formula
for some special cases using classical results due to Cohen [6], and a new proof of Ram’s exact formula for
order two using Ahmadi’s recent generalization of a theorem due to Carlitz.

Difference sets correspond to sequences or arrays with constant out-of-phase periodic autocorrelation.
They are often studied by applying characters to a group ring equation, resulting in a set of Weil numbers
that must satisfy certain mutual properties [25] [35]. Bernhard Schmidt considered the contrary question:
when does a single Weil number yield a solution of a group ring equation? This not only gives immediate
nonexistence results for relative difference sets, but allows progress to be made in problems involving unique
differences in cyclic groups.

Network Coding
In multicast network communications, data is sent to several receivers at the same time. Network coding
permits multiple sources to transmit simultaneously to multiple receivers, by allowing each intermediate
network node to re-encode information via linear combination of its inputs. This process is highly sensitive
to errors, because a single corrupted message can affect the entire network via successive linear combinations
with other messages. For this reason, effective error control is a crucial requirement in network coding
[34]. In her expository lecture, Emina Soljanin of Bell Labs gave a broad survey of the main ideas from
information theory, algebra, and combinatorics. She then focussed on the combinatorial framework, showing
how practical questions of network coding lead to fundamental open problems involving arcs in projective
spaces.

Two very important classes of codes now used in network coding are the rank metric codes introduced by
Gabidulin in 1985 [12] and the closely related subspace codes. A rank metric code consists of n×n matrices
over Fq with the distance function d(X,Y ) = rank(X−Y ); these codes are also useful in space-time coding
[26] and distributed storage.
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Relinde Jurrius investigated the rank weight enumerator of a rank metric code and some of its gener-
alizations, namely the r-th generalized rank weight enumerator and the extended rank weight enumerators.
Analogously to results for ordinary linear codes, these objects determine each other. Moreover, Jurrius used
counting polynomials to extend her results from the case of codes over Fq to codes over a finite field exten-
sion.

Arguably the most important subclass of rank metric codes is given by the linear maximum rank distance
codes (MRD codes) which were constructed by Gabidulin; these are analogues of the classical Reed-Solomon
codes. Anna-Lena Trautmann addressed the practical problem of list decoding the Gabidulin codes, using
minimal bases of linearized polynomial modules. Her decoding algorithm computes a list of all closest
codewords to a given received word. Although the complexity of the algorithm becomes exponential as soon
as the closest codewords are beyond the unique decoding radius, it still beats the complexity of exhaustive
search.

John Sheekey considered MRD codes that are not necessarily linear; the first non-trivial example of a
non-linear MRD code was recently given by Cossidente, Marino and Pavese for the case where n = 3 and
the minimum distance d is 2. Sheekey studied the case d = n, which corresponds to a finite semifield (namely
a non-associative division algebra). He gave an overview on semifields (which have been studied intensively
in recent years for other reasons) and introduced a new family of linear MRD-codes for each parameter; using
some of the theory of semifields, he proved that these are inequivalent to the Gabidulin codes.

Kai-Uwe Schmidt’s talk focussed on subgroups of the set of n × n symmetric matrices over Fq for odd
q, for which the rank of the difference of any pair of distinct matrices in the subgroup is at least d. (Such sets
can be considered as rank metric codes that are subject to the additional constraints that the matrices of the
code must be symmetric and the set must form a subgroup.) Schmidt derived an upper bound on the size of
such a subgroup in terms of n, q and d, and showed how to construct subgroups for which the upper bound
is attained. A key insight is a new understanding of the association scheme of symmetric bilinear forms. His
results can be equivalently formulated in terms of the weight enumerators of certain cyclic codes.

Planar Functions and their Generalizations
A perfect non-linear (PN) function is a map F : Fpn → Fpn with the property that x 7→ F (x+ a)− F (x) is
a permutation for all a 6= 0. Such functions are also called planar functions, because they define projective
planes. Most known PN functions are associated with semifields [30]. In the binary case p = 2, PN functions
unfortunately cannot exist; this motivates the study of almost perfect nonlinear (APN) functions, where now
x 7→ F (x + a) + F (x) is required to have 0 or 2 solutions for all a 6= 0. APN functions are of great
interest in cryptography, as they provide optimal resistance of a block cipher to differential attacks. In his
expository lecture, Alexander Pott introduced these notions and gave a comprehensive overview of the known
constructions of PN and APN functions. He also discussed both the similarities and the differences between
the PN and the APN case, and highlighted several important open problems.

Petr Lisoněk considered the existence of APN functions which are also permutations of F2n ; this addi-
tional property is desirable in the design of block ciphers. While many APN permutations are known when
n is odd, their existence in even dimensions n > 6 is an open problem. An example for n = 6 was given
by Browning, Dillon, McQuistan and Wolfe in 2009 [4]. Lisoněk related some parts of their construction to
consideration of the number of rational points on a certain family of hyperelliptic curves of genus 2 over F26 ,
and discussed the possibility of obtaining similar constructions in higher even dimensions.

Yin Tan studied the related notion of zero-difference δ-balanced functions, where one requires that the
equation F (x + a) − F (x) = 0 has exactly δ solutions for all a 6= 0. All known quadratic planar func-
tions are zero-difference 1-balanced, and some quadratic APN functions are zero-difference 2-balanced. Af-
ter considering the relationship between this notion and differential uniformity, Tan gave new families of
zero-difference pt-balanced functions and used these to construct new partial difference sets and hence new
strongly regular graphs.

Yue Zhou considered monomial negabent functions. Like the related but better-known bent functions
(which arise as component functions of PN functions), negabent functions play an important role in both
cryptography and coding theory. Here the defining property is that the map x 7→ F (x+ a) +F (x) + Tr(ax)
(where Tr denotes the trace function) should be balanced for every a 6= 0. Zhou presented families and
examples of quadratic and cubic negabent polynomials in the special case F (x) = Tr(γxd).
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Sequences and Quantum Information Theory
In his expository lecture, Bill Martin described two notoriously challenging problems of quantum information
theory that he considered the workshop participants were “born to solve”. The first problem is the construction
of large sets of equiangular lines in Cd or in Rd, namely sets of unit vectors for which distinct vectors
have inner product of constant magnitude. The second problem is the construction of large sets of mutually
unbiased bases in Cd or in Rd, namely orthonormal bases for which unit vectors from distinct bases have
inner product of constant magnitude. Much of what is currently known about these two problems is related
to bent functions, PN functions and codes that are linear over the ring Z4 [5], [14]. Martin carefully and
entertainingly explained how these problems arise in quantum information theory, and why he believes they
should be regarded as fundamentally combinatorial problems.

Golay complementary sequences and arrays have the property that the sum of their aperiodic autocorre-
lations is zero at all non-zero shifts [16]. They have been applied to a wide range of digital communications
technologies, including infrared spectrometry [15], optical time domain reflectometry [28], and especially
multicarrier wireless communications [9]. Matthew Parker introduced the novel idea of constructing Golay
sequences and arrays using mutually unbiased bases. This allows the construction of larger sets of Golay
sequences/arrays than those described by Davis and Jedwab [9], and therefore a higher code rate when used
for transmission; this advantage occurs at the cost of an increase in the size of the sequence/array alphabet.
The new constructions lead to interesting enumeration problems.

Codes and Groups
It has long been recognized that codes with strong error-correction capabilities are often related to finite
simple groups, extremal graphs, and extremal finite geometries. These connections are still being fruitfully
exploited.

Dimitri Leemans described a new method of studying primitive coset geometries, using the permutation
representations of groups. This method enables the construction of new binary codes, from the row span
over F2 of the incidence matrices of some strongly regular graphs associated with large groups. Leemans
presented an algorithm for handling the calculations for these groups, that is at least 1000 times faster than
the best previously known. It permits the classification of rank two primitive coset geometries for the five
Mathieu groups, the first three Janko groups, the Higman-Sims group, and the McLaughlin group.

The Hoffman-Singleton graph and the Higman-Sims graph are associated with the finite simple group
PSU3(5) and the Higman-Sims group, respectively. Bernardo Rodrigues examined the codes of these graphs,
producing examples of codes having optimal or best-known minimum distance for their length and dimension,
and examples meeting the classical Gilbert-Varshamov bound [13], [36]. He also constructed new 2-designs
that are invariant under the Higman-Sims group.

Dean Crnković described a method for constructing self-orthogonal and self-dual codes using orbit ma-
trices of symmetric 2-designs with prescribed automorphism group. The method employs Lander’s results on
linear codes spanned by incidence matrices of symmetric designs [24], and extends previous constructions
due to Harada and Tonchev [19].

Emerging Applications in the Mathematics of Communications
Researchers are able to draw on an enormous body of coding theory knowledge, accumulated over many
decades, in order to solve entirely new practical problems soon after they present themselves. This was
powerfully illustrated by five of the workshop talks, whose topics were channel estimation, efficient spectrum
allocation, chip design, tamper-resistant cryptography, and random number generator hardware.

Digital information can be transmitted over a noisy channel by modulating a carrier signal with a se-
quence of values drawn from a finite alphabet. The channel estimation problem is to find the parameters that
determine how the channel transforms the transmitted sequence into the received sequence. In his expository
lecture, Alexander Fish described the classical pseudo-random method for solving the channel estimation
problem for a delay-Doppler channel. This method has complexity O(N2 logN), where N is the length
of the transmission sequence. Fish then introduced alternative solutions to this problem, developed with
Gurevich and others, whose complexity is only O(N logN + r2) for a channel of sparsity r.
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Conventional coding theory is used to recover information in the presence of errors introduced by trans-
mission over a noisy channel. Anant Sahai introduced the novel concept of an identity code, for determining
the identity of the transmitter without necessarily being able to decode the actual message that was trans-
mitted. This has potential application to the problem of allocating available electromagnetic spectrum more
efficiently than under the current regulatory constraints.

On-chip data buses frequently experience problems of crosstalk, in which a signal travelling along one
path experiences interference from signals on adjacent parallel paths. These problems are growing in severity
as circuits are becoming progressively more miniaturized. Charlie Colbourn showed how balanced sampling
plans from statistical experimental design theory can be modified to produce packing sampling plans, leading
to coding schemes that eliminate various types of crosstalk while simultaneously achieving low power and
error correction.

Designers of cryptographic systems always attempt to protect against attacks based on the theoretical
properties of their cryptosystems. In addition, they must also guard against side-channel attacks exploiting
information, such as timing or power consumption, that is leaked when the cryptosystem is physically imple-
mented. Jon-Lark Kim discussed complementary information codes that reduce the cost of countermeasures
against side-channel attacks. He showed how to construct such codes from strongly regular graphs and doubly
regular tournaments.

The generation of truly random numbers by physical means is important for producing cryptographic
keys and for resisting cryptographic attacks such as side-channel attacks and fault injection. In his talk,
Florian Caullery assumed that a true random number generator is embedded in an electronic device. He then
examined how one can test at run time whether the generator is operating correctly, using limited memory
and processing. His tests are based on the computation of the nonlinearity and absolute indicator of Boolean
functions.

3 Panel Discussion
The final formal event of the workshop was a panel discussion on future research directions in the mathemat-
ics of communications, moderated by Jonathan Jedwab. The panellists were Claude Carlet, Charlie Colbourn,
Bill Martin, and Anant Sahai. The discussion began with each of the four panellists explaining their view
of the important trends, emerging areas, major open problems, and new connections. This was followed
by a lively and wide-ranging discussion among the workshop participants, which extended well beyond the
allotted 90 minutes.

Many specific future research directions were identified during the discussion, including:

• decoding random linear codes

• using coding theory to manage distributed data storage

• developing new types of stream cipher

• applying the considerable body of existing knowledge about APN functions to the design of better
cryptographic S-boxes

• attacking longstanding open conjectures in coding theory, such as the MDS conjecture [33] or Del-
sarte’s constant-weight conjecture [10].

• developing codes suited for low power consumption, particularly as the “Internet of Things” (intercon-
necting computing devices embedded within existing infrastructure) emerges

• using coding theory to enable efficient version control for distributed file storage

• solving problems arising in the construction of practical quantum computers.

Special mention was made of Peter Keevash’s spectacular and unexpected 2014 solution [22] of one of
the most important open problems in design theory: the existence conjecture for Steiner t-designs. One of
the panellists declared that this put design theory “at a crossroads”, and challenged participants to try to find
applications of this new theory to practical problems, rather than solely seeking to develop the theory further.
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There was general agreement among panellists and participants that theory and application are both im-
portant, that neither one should be neglected in favour of the other, and that the study of the mathematics of
communications is renewed each time a new connection is made in either direction. There was considerable
discussion of specific strategies by which theoreticians can identify and explore possible applications, for
example:

• teaching a course geared to students in application-oriented disciplines such as biology, engineering,
or anthropology

• participating in an industrial problem-solving event such as the Graduate Industrial Mathematical Mod-
elling Camp (Canada) or Mathematical Problems in Industry (USA)

• organizing cross-disciplinary seminars for graduate students

• maintaining contact with former graduate students who are now employed in industry

• browsing various IEEE journals in search of familiar combinatorial structures, and then trying to un-
derstand the underlying reason for their appearance.

One of the workshop participants remarked after the panel discussion that he had never seen such frank
self-examination take place in public at a conference, and that he found it extremely interesting and helpful.

4 Interactions
The workshop schedule was designed with copious time for unstructured private discussions, and the par-
ticipants eagerly took advantage of the opportunities. The following (decidedly not exhaustive) examples of
participant interaction are intended to give a sense of the activity and excitement that occurred outside the
formal sessions of the workshop, and to indicate that many discussions took place between researchers who
had not previously collaborated.

Bill Martin hosted an open session, attended by over a dozen researchers, attempting to catalogue as many
documented examples as possible of specific error-correcting codes used in practical applications.

The seven participants based at Canadian institutions had a group discussion about long-term plans for
collaborating more closely with each other.

Several participants spoke to Emina Soljanin about her experience of working in an industrial research
lab.

Brett Stevens and Daniel Katz began a collaboration, investigating a construction of covering arrays using
multiplicative characters over finite fields.

Jim Davis and Anant Sahai had several conversations about legal and engineering questions arising from
their respective presentations, as well as academic and public policy issues.

Bill Kantor had discussions with Claude Carlet about constructing new Kerdock codes, with Jim Davis
about mutually unbiased bases and bent function and difference sets, and with Brett Stevens about PN and
APN functions.

5 Participant Feedback
This report concludes with some samples of participant feedback.

“This was one of the best workshops I have attended in years. The talks were all very interesting and the
idea of including Jim Davis’ talk was just perfect. Jim had a unique experience and sharing it with us was
so enlightening. I had no idea how the judicial system works in a scientific dispute, before his talk. Having
someone from the industry was an excellent idea. Not jamming too many talks each day was very helpful in
staying alert. Bill Martin’s session and talk were both very interesting.
The fact that we met and planned for a joint venture, if fruitful, would be a great highlight of the workshop.
Thank you very much for a great workshop.”
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“Thank you for organizing such an amazing meeting. I really had a good time. And this may really cement
[named graduate student] into this research area. He’s totally pumped to do research now.”

“Thanks for the excellent meeting.”

“Thank you, thank you, thank you for not scheduling too many talks!”

“Once again thank you for the opportunity I was given to attend a well run workshop. I think that the
workshop was extremely useful to me in particular, since I had three collaborators attending the meeting and
this was a good opportunity for us to have a look at outstanding projects and discuss ideas of how best to
address them. Two papers which were in advanced stage of preparation are about to be submitted thanks to
the fact that we met. We spoke and got new ideas about finishing some outstanding papers. In addition we
were able to start new projects and discussed ideas regarding directions for joint work. I was approached
by two colleagues on the possibility of joint work in the near future, and possible collaborative visit to our
universities. The panel discussion was an essential component of the discussion to me and it enlightened me
on the various problems that one can address. The idea of a common and yet beautiful remote research place
is a plus for the meeting.”

“Thank you for a great workshop!”

“It was indeed an enjoyable, informative, and productive week!”

“I thought the quality of all the talks, both expository and contributed, was higher than the average conference
in regards to both delivery and content. Quite a few of even the contributed talks included “big problems” that
should be or were in the process of being tackled. There was a variety of topics discussed, yet the conference
was very cohesive overall. The schedule made it possible to attend all the talks without feeling burnt out and
while still having time for small collaboration sessions. I did not leave at the end being glad it was over, but
rather looking forward to the next one!”

“I would add my voice to say that this workshop was one of the more useful gatherings I have had in the past
decade. The talks were interesting, and those talks sparked conversations. There was plenty of free time that
enabled participants to do the work we love to do. Well done!”
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