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Mandelbrot’s Intuition
At the end of the 20th century, David Vere-Jones pointed out to
me that Mandelbrot had in the early 80s suggested that the
zero-set of two-sided standard Brownian motion B = (Bs)s∈R
should have a property similar to the one I was considering at
that time for point processes on Rd . Mandelbrot’s intuitive idea
was that B should look the same from all its zeros. Note that
this idea has a well-known formalisation for a two-sided simple
symmetric random walk on the integers.

In my case, the intuitive idea was that a Palm version of a
stationary point process in Rd should look the same from all its
points. This informal property has a well-known formalisation
when d = 1. For d > 1, I had formalised this idea with an
intuitively acceptable property that I named point-stationarity.
In my 2000-book I suggested that the zero set of B might have
that same property. It turns out my idea needed a modification.
Also there is a simpler formalization that is basically obvious.

Hermann Thorisson Mass-Stationarity, Shift-Coupling, and Brownian Motion Peter Glynn not 60



Mass-Stationarity
Setting: Let (Ω,F ,P) support the random elements below.

Let G be a locally compact second countable topological group
with left-invariant Haar measure λ.

Let ξ be a random measure on G.

Let X be a random element in a space on which G acts.

Write θt for the shift map placing a new origin at t ∈ G.

E.g. X = (Xs)s∈G a shift-measurable r.f. and θtX = (Xts)s∈G.

Definition

The pair (X , ξ) is called mass-stationary if for all bounded
λ-continuity sets C ⊆ G of positive λ-measure

θVC (X , ξ,U−1
C )

D
= (X , ξ,U−1

C )

where UC is such that P(UC ∈ · | X , ξ) = λ( · | C)

and VC is such that P(VC ∈ · | X , ξ,UC) = ξ( · | θUC C).
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Mass-Stationarity in the case when G is compact
Definition (from previous slide)

The pair (X , ξ) is called mass-stationary if for all bounded
λ-continuity sets C ⊆ G of positive λ-measure

θVC (X , ξ,U−1
C )

D
= (X , ξ,U−1

C )

where UC is such that P(UC ∈ · | X , ξ) = λ( · | C)

and VC is such that P(VC ∈ · | X , ξ,UC) = ξ( · | θUC C).

Note that when G be compact then P(VG ∈ · | X , ξ) = ξ( · | G).

Theorem

Let G be compact and S be a random element in G such that

P(S ∈ · | X , ξ) = ξ( · | G).
Then

(X , ξ) mass-stationary ⇐⇒ θS(X , ξ)
D
= (X , ξ)
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Mass-stationarity and preserving shifts π

Let π be a measurable map taking ξ to a location π(ξ) in G.
Define the induced allocation rule τπ = τ ξπ by

τπ(s) = π(θsξ)s, s ∈ G.

Call π preserving if τπ preserves ξ, that is, if ξ(τπ ∈ ·) = ξ.

Theorem

(X , ξ) mass-stationary ⇒ ∀ preserving π : θπ(ξ)(X , ξ)
D
= (X , ξ)
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Mass-stationarity and preserving shifts π

Let π be a measurable map taking ξ to a location π(ξ) in G.
Define the induced allocation rule τπ = τ ξπ by

τπ(s) = π(θsξ)s, s ∈ G.

Call π preserving if τπ preserves ξ, that is, if ξ(τπ ∈ ·) = ξ.

Theorem

(X , ξ) mass-stationary ⇒ ∀ preserving π : θπ(ξ)(X , ξ)
D
= (X , ξ)

Theorem: Let G be Abelian and ξ a simple point process. Then

(X , ξ) mass-stationary ⇐⇒ ∀ preserving π : θπ(ξ)(X , ξ)
D
= (X , ξ)
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Mass-stationarity and preserving shifts π

Let π be a measurable map taking ξ to a location π(ξ) in G.
Define the induced allocation rule τπ = τ ξπ by

τπ(s) = π(θsξ)s, s ∈ G.

Call π preserving if τπ preserves ξ, that is, if ξ(τπ ∈ ·) = ξ.

Theorem

(X , ξ) mass-stationary ⇒ ∀ preserving π : θπ(ξ)(X , ξ)
D
= (X , ξ)

Theorem: Let G be Abelian and ξ a simple point process. Then

(X , ξ) mass-stationary ⇐⇒ ∀ preserving π : θπ(ξ)(X , ξ)
D
= (X , ξ)

Theorem: Let G = R and ξ be diffuse. Then

(X , ξ) mass-stationary ⇐⇒ ∀ preserving π : θπ(ξ)(X , ξ)
D
= (X , ξ)
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Mass-stationarity when G = R and ξ is diffuse

Theorem (from previous slide): Let G = R and ξ diffuse. Then

(X , ξ) mass-stationary ⇐⇒ ∀ preserving π : θπ(ξ)(X , ξ)
D
= (X , ξ)

The following shifts πr move an amount r forward in the mass

πr (ξ) = sup{t ∈ R : ξ([0, t ]) = r}, r ∈ R.

It is easy to show that these shifts are preserving.
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Mass-stationarity when G = R and ξ is diffuse

Theorem (from previous slide): Let G = R and ξ diffuse. Then

(X , ξ) mass-stationary ⇐⇒ ∀ preserving π : θπ(ξ)(X , ξ)
D
= (X , ξ)

The following shifts πr move an amount r forward in the mass

πr (ξ) = sup{t ∈ R : ξ([0, t ]) = r}, r ∈ R.

It is easy to show that these shifts are preserving.

Moreover, the following holds:

Theorem: Let G = R and ξ be diffuse. Then

(X , ξ) mass-stationary ⇐⇒ ∀ r ∈ R : θπr (ξ)(X , ξ)
D
= (X , ξ)
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Mandelbrot was right about the zeros of B = (Bs)s∈R

Recall the shifts πr (ξ) = sup{t ∈ R : ξ([0, t ]) = r}, r ∈ R, and

Theorem : Let G = R and ξ be diffuse. Then

(X , ξ) mass-stationary ⇐⇒ ∀ r ∈ R : θπr (ξ)(X , ξ)
D
= (X , ξ)

Now let `0 be local time at zero.
This random measure represents the zeros of B and is diffuse.
Moreover, with Tr = πr (ξ) the following holds:

Theorem: (B, `0) is mass-stationary, that is,

θTr B = (BTr+t )t∈R is a two-sided Brownian motion for all r ∈ R .

Thus: when traveling in time accoring to the clock of local time
at zero you always see globally a two-sided Brownian motion.
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Mass-Stationarity and Shift-Coupling when G = R
Now let ξ and η be random measures such that θtξ = f (θtX )
and θtη = g(θtX ) for some measurable f and g and all t ∈ R.

Let π be a measurable map taking X to a location π(X ) in R.
Say that τπ balances ξ and η if ξ(τπ ∈ ·) = η.

Let X ′ be a random element in the same space as X .
Put ξ′ = f (X ′) and η′ = g(X ′).

Theorem: Let G = R (for simplicity).

Let (X , ξ) and (X ′, η′) both be mass-stationary. Let
0 < E

[ ∫ π1(X)
0 ξ([t , t + 1])dt

]
= E

[ ∫ π1(X ′)
0 η′([t , t + 1])dt

]
<∞.

Let X and X ′ have the same trivial distribution on invariant sets.
Then θπ(X)X

D
= X ′ ⇐⇒ τπ balances ξ and η

Remark

θπ(X)X
D
= X ′ means T = π(X ) is shift-coupling time for X and X ′.
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Unbiased shifts of two-sided Brownian motion B
Definition: Let B = (Bt )t∈R be a standard Brownian motion.

An unbiased shift of B is a random time T in R such that:
T = π(B) for some measurable map π,
(BT+t − BT )t∈R is a standard Brownian motion,
(BT+t − BT )t∈R is independent of BT .

Remark

Thus, T = π(B) is an unbiased shift if and only if
θT B = (BT+t )t∈R is a two-sided standard Brownian motion
not necessarily taking the value 0 at time 0.

That is, θT B D
= B′ where B′ = B′0 + B

with B′0 distributed as BT and independent of B.

Thus T is a shift-coupling time for B and B′.

Note that T = πr (X ) is an unbiased shift with BT = 0.
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Examples of times T that are NOT unbiased

Example

If T ≥ 0 is a stopping time, then (BT+t −BT )t≥0 is a one-sided
Brownian motion independent of BT . However, the example

T := inf{t ≥ 0 : Bt = y} = hitting time of a non-zero state y

shows (BT+t −BT )t∈R need not be two-sided Brownian motion.

Example

Consider a deterministic T = t0 .
Then B̃ := (Bt0+t − Bt0)t∈R is a two-sided Brownian motion.
However, it is not independent of Bt0 since Bt0 = −B̃−t0 .

Remark

We might see later that an unbiased shift need not be a
stopping time, even when it is nonnegative.
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Mass-Stat. and Shift-Coupl. when G = R and ξ diffuse
Recall: θtξ = f (θtX ), θtη = g(θtX ), ξ′ = f (X ′), η′ = g(X ′).

Theorem (from some slides ago): Let G = R .

Let (X , ξ) and (X ′, η′) both be mass-stationary. Let
0 < E

[ ∫ π1(X)
0 ξ([t , t + 1])dt

]
= E

[ ∫ π1(X ′)
0 η′([t , t + 1])dt

]
<∞.

Let X and X ′ have the same trivial distribution on invariant sets.
Then θπ(X)X

D
= X ′ ⇐⇒ τπ balances ξ and η

Theorem

In addition to the conditions in the above theorem, let ξ and η
be diffuse and orthogonal. Then the map π defined by

π(X ) := inf{t > 0 : ξ([0, t ]) = η([0, t ])}
is such that the induced allocation rule

τπ(s) := inf{t > s : ξ([s, t ]) = η([s, t ])}, s ∈ R,
balances ξ and η.
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Existence of unbiased shifts of B
Let ν be a probability measure on R. Let Bν

0 be a random
variable with distribution ν and independent of B. Define a
standard Brownian motion with distribution ν at 0 by

Bν = Bν
0 + B.

Let `x be local time of B at x ∈ R and set `ν =
∫
`xν(dx).

These random measures are diffuse.

Theorem

The pair (Bν , `ν) is mass-stationary and has the same trivial
distribution as (B, `0) on invariant sets. Further,
0 < E

[ ∫ π1(Bν)
0 `ν([t , t + 1])dt

]
= E

[ ∫ π1(B)
0 `0([t , t + 1])dt

]
<∞.

Due to this and the previous slide we now obtain the following.
Theorem

If ν{0} = 0 then T ν := inf{t > 0 : `0([0, t ]) = `ν([0, t ])} is an
unbiased shift and BT has distribution ν (that is, T imbeds ν).

Hermann Thorisson Mass-Stationarity, Shift-Coupling, and Brownian Motion Peter Glynn not 60



The Brownian Bridge
Jim Pitman and Wenpin Tang have just shown in their paper

The Slepian zero set, and Brownian bridge
embedded in Brownian motion by a spacetime shift,
http://arxiv.org/abs/1411.0040

that the Slepian process (Bt+1 − Bt )t∈R
has its own ‘local time at zero’ γ.

Note that (Bt+1 − Bt )t∈R is stationary.
This implies that ((Bt+1 − Bt )t∈R, λ) is mass-stationary,
here λ is Lebesgue measure.
This also implies that γ does not have where 0 in its support.
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The Brownian Bridge
Jim Pitman and Wenpin Tang have just shown in their paper

The Slepian zero set, and Brownian bridge
embedded in Brownian motion by a spacetime shift,
http://arxiv.org/abs/1411.0040

that the Slepian process (Bt+1 − Bt )t∈R
has its own ‘local time at zero’ γ.

Note that (Bt+1 − Bt )t∈R is stationary.
This implies that ((Bt+1 − Bt )t∈R, λ) is mass-stationary,
here λ is Lebesgue measure.
This also implies that γ does not have where 0 in its support.

Theorem

Set T = inf{t > 0 : γ([0, t ]) = t}.

Then (BT+u − BT )0≤u≤1 is a standard Brownian Bridge.
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The Brownian Bridge

Note that (Bt+1 − Bt )t∈R is stationary.
This implies that ((Bt+1 − Bt )t∈R, λ) is mass-stationary,
here λ is Lebesgue measure.
This also implies that γ does not have where 0 in its support.

Theorem

Set T = inf{t > 0 : γ([0, t ]) = t}.

Then (BT+u − BT )0≤u≤1 is a standard Brownian Bridge.

Outline of proof: Set X = (Xt )t∈R where Xt = (Bt+u − Bt )0≤u≤1.
Note that X is stationary so (X , λ) is mass-stationary.
The Palm version (X ′, γ′) of X w.r.t. γ is mass-stationary.
Moreover, X ′0 is a standard Brownian Bridge.
The conditions of the shift-coupling theorem are satisfied.
Thus (BT+u − BT )0≤u≤1

D
= X ′0 .

Hermann Thorisson Mass-Stationarity, Shift-Coupling, and Brownian Motion Peter Glynn not 60



PETER
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