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» k number field, A adele ring of k
» [, absolute Galois group, W) Weil group
» G split symplectic or special odd orthogonal group over k

Definition
Automorphic representations of G(A) are irreducible constituents of the

regular representation on L2(G(k)\G(A)).

L(G(K)\G(A)) = L3sc(G) @ L2pe(G)

Loisc(G) = L245p(G) @ L7 (G)

disc



Global Langlands Correspondence

discrete automorphic discrete Arthur parameters
representations of G(A) o L xSL(2,C)— G /G—conj
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discrete automorphic discrete Arthur parameters
representations of G(A) o L xSL(2,C)— G /G—conj

Ly is the hypothetical global Langlands group satisfying

1 Ki Ly » Wi 1

where K} is compact.
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Arthur packet

» A,(G): equivalence classes of discrete automorphic representations.

» W,(G): equivalence classes of discrete Arthur parameters.

Theorem (Arthur)

For each 1) € W,(G), there exits a “multi-set” Ty, of equivalence classes
of irreducible admissible representations of G(A) such that

1.
My = @, My,

Ax(G) C |_| My
PEV,(G)

3. (Endoscopy theory): One can distinguish the automorphic
representations in [y.
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Arthur packet

» [y is called global Arthur packet

> [y, is a finite “multi-set” of equivalence classes of irreducible
admissible representations of G(k,), called local Arthur packet.

Example
1. G =50(3) = PGL(2): Ny is a single automorphic representation.

2. G = 5p(2) = SL(2): My is the restriction of an automorphic
representation of GLy(A) to SLy(A).
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Global problem

How to distinguish the residue spectrum in 1,7

Meeglin:
> global condition: zeros (poles) of certain L-functions “related” to 1.

> local condition: “fine” parametrization of Iy, .
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Arthur parameter

Let F be a p-adic field, Lr = Wg x SL(2,C)

G G
Sp(2n) 50(2n+1,C)
50(2n+1) Sp(2n,C)

Let G 295 GLN(C) (N = 2n or 2n+1) be the standard representation.

¥ W x SL(2,C) x SL(2,C) — G 225 GL(N,C)

with bounded image on 9|, .
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Jordan blocks

= ®i(pi @ Va, @ V)

> p; equivalence class of unitary irreducible representation of W
> g, b,‘ eN
> Um is Sym™~ L representation of SL(2,C)

Define
Jord(yp) = {(pi, ai, bi) }

and
Jord,(v) == {(p',a', b'") € Jord(v) : p' = p}.
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Parity

For self-dual p: orthogonal type or symplectic type

a+ b is even, if p is orthogonal

(p, a, b) is orthogonal < ) o ]
a+ b is odd, if p is symplectic

a+ bis odd, if p is orthogonal

,a, b) is symplectic < i . .
(p ) is symp { a+ b is even, if p is symplectic

= D revnon
(p,a,b)€ Jord(¢)
same parity as G

From now on, we will assume 1) = ).



Visualize Jordan blocks
For (p, a, b) € Jord(v)),
A=(a+b)/2—1 B=|a—b|/2

and
= {Sign(a —b),ifa#b

arbitrary, otherwise.

So we can also denote (p, a, b) by (p, A, B, ().

¢

Figure: p

oce



Admissible order
A total order >, on Jord, (1) is called admissible if

V(p, A, B,C). (p, A', B', (') € Jord,(1)) satisfying
A>A B>B and ¢ =

we have (p, A, B,() >y (p, A", B', ().
Example
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Definition
We say 9 has discrete diagonal restriction if for each p the Jordan blocks
in Jord, () are “disjoint”.




Discrete diagonal restriction

Definition
We say 9 has discrete diagonal restriction if for each p the Jordan blocks
in Jord, () are “disjoint”.

A3 By A B, A B, 0

In this case, Jord,(v) has a natural order >, namely

(p, A, B,C) >y (p, A, B, (") if and only if A > A
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Theorem (Moeglin)

Suppose 1 has discrete diagonal restriction, >, is the natural order,

rl“/’ = @ 7TM,>¢(¢3LQ)'
{(LE) H(p,a,b)ejord(w) Sl»g(pvavb)zl}/'\/

where >, (1,1, n) is irreducible.
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Theorem (Moeglin)

Suppose 1 has discrete diagonal restriction, >, is the natural order,

rl“/’ = @ 7TM,>¢(¢aLﬂ)'
{(LE) H(p,a,b)ejord(w) Slﬂ(pvavb):l}/'\/

where >, (1,1, n) is irreducible.
> (I,n) are integral valued functions over Jord(v), such that
I(p, A, B,C) € [0, [(A = B +1)/2]] and 1(p, A, B, () € {£1},

> (P, A B, Q) = m(p, A, B, () B (- )lA-BrDAHI A

)~ (I',n') if and only if / = /', and

(n/n')(p. A, B.C) =1

unless I(p, A, B,¢) = (A— B +1)/2.

Eln
> (I,



Dominating parameter
For 1/ and admissible >, we can index Jord,(v) such that

(p, A Bi, Gi) >y (ps Ai—1, Bi—1,Gim1)-
We say 15, dominates 1) with respect to >, if Jord,(1s.) consists of
(vai + T,', Bi + TivCi) for TI > 07

with the same admissible order >, under the natural identification.

A+ T; Bi+T; A_1+Ti-1 Bi-1+Ti1
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For ¢ and admissible >, we choose a dominating parameter s, with
discrete diagonal restriction. Then we define

M, > (w’ 1, ﬂ) = Op;(p,Ai,Bf,C;)EJordp(w)JaCXiﬂ-M7>w ('(/)>>>L ﬂ)



Moeglin's parametrization ||

For ¢ and admissible >, we choose a dominating parameter s, with
discrete diagonal restriction. Then we define

M, > (w’ 1, ﬂ) = Op;(p,Ai,Bf,C;)EJordp(w)JaCXiﬂ-M7>w ('(/)>>>L ﬂ)

Proposition (Moeglin)

L. 7m,>, (¥, 1,n) is either irreducible or zero.
2. If’]TM,>1/,(’l/}aLﬂ) = 7TM,>1/,(’1/131/7H/) 7& 0, then (17 ﬂ) ~ (1/7ﬂl)'
3.

nw = @ TM,> W,L ﬂ)

{(Ln): H(p,a,b)ejard(w) e1,n(p;a,b)=1}/~

where Ty, >, (1, 1,m) is irreducible or zero.



Local problem

What are the conditions on (/,n) for mm >, (¥, 1,1n) #0 7

Example

A3 A2 A1 B3 B2 Bl

oce



Pull

An An—l Bn—l Bn

+
m /—\
An An—l Bn—l Bn



Pull

An

An

B,



Expand

An Ai Bn Bi




Change Sign

(=)



Example

Let y =p Q@51 Q31 ® pR 31 @ lss B pR 113 Q@ 5. Then
[As, B3] = [40,10] [A2,Bx] =[37,7] [A1,Bi] =[8,4]

+ -

Az A B3 A1 B, B



Example

0 < /1 < 2,0 < /2 < 15,0 < /3 < 157 and (—1)’1+/2+I3T]1772773 =1.



Example

0<h<20<h<150< k<15, and (—1)HeFhy pon; = 1.

n3 =11 and 2 =Ny —5<h—h+2L <15

n3 =m and mp # k+h+2h >25

n3 £ n and 10 =M Kh—h <114k and K+ — 2/ > 15
77375771 and =M h—h>11+h and —36 < —hK—hL+2L <—16
M # m and g #m h—h <114 hand =156 <K —h—2h <5
773757]1 andn27é’l71 h—h>11+h and — K+ b+ 2L > —6

Each case gives rise to a polytope, and by counting the integral points in
them we get || = 1651.




