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Setting

Time-dependent Schrödinger equation

i
∂ψ

∂t
= Hψ

for the wavefunction ψ = ψ(x1, . . . , xd , t)

MCTDH: model reduction via low-rank tensor approximation

Meyer, Manthe & Cederbaum 1990 (first MCTDH paper)
Meyer, Gatti & Worth 2009 (MCTDH book)



Galerkin method / Full configuration interaction

With L2-orthonormal basis functions ϕn
j (for j = 1, . . . ,K in each

mode n = 1, . . . , d), approximate the wave function by

ψ(x1, . . . , xd , t) ≈
K∑

i1=1

· · ·
K∑

id=1

ai1,...,id (t)ϕ1
i1(x1) . . . ϕd

id
(xd),

where the time-dependent coefficient tensor

A(t) = (ai1,...,id (t)) ∈ CK×···×K = CKd

satisfies a linear tensor differential equation

i Ȧ(t) = H[A(t)]

with a discrete Hamiltonian H : CKd → CKd
.

This system is not directly tractable because of its sheer size.



Tucker tensor format

Approximate, with r � K ,

ai1,...,id ≈
r∑

j1=1

· · ·
r∑

jd=1

cj1,...,jd u
1
i1,j1 . . . u

d
id ,jd

.

Single-particle matrices Un = (unij) ∈ CK×r (for n = 1, . . . , d) have

orthonormal columns un
j ∈ CK .

Core tensor C = (cj1,...,jd ) ∈ Cr×···×r .

Storage is reduced from Kd to rd + dKr entries.

Shorthand tensor notation

A ≈ Y = C ×1 U1 · · · ×d Ud = C
d

X
n=1

Un.



MCTDH

The MCTDH method combines

I low-rank tensor approximation in the Tucker format with the

I Dirac-Frenkel time-dependent variational principle.



MCTDH

Mr = manifold of all Tucker tensors where each single-mode
matrix unfolding of the core tensor is of full rank r

TYMr = tangent space of Mr at Y ∈Mr

Approximate A(t) ≈ Y (t) ∈Mr by〈
i Ẏ (t)− H[Y (t)], δY

〉
= 0 for all δY ∈ TY (t)Mr .

With the orthogonal projection P(Y ) onto the tangent space
TYMr , this can be equivalently stated as

i Ẏ (t) = P(Y (t))H[Y (t)].

ODE on a tensor manifold



MCTDH equations of motion

i Ċ = H[Y ]
d

X
n=1

U∗n

iU̇n = (I −UnU∗n)matn
(
H[Y ] X

k 6=n
U∗n
)
C+

(n)

with the pseudo-inverse C+
(n) = C ∗n

(
C (n)C ∗(n)

)−1
of the

n-mode matricization of the core tensor C (n) = matn(C ), and with

Y (t) = C (t)
d

X
n=1

Un(t),

which is taken as the approximation to A(t).

These differential equations need to be solved numerically.



Ill-conditioned MCTDH density matrices

MCTDH equations contain the inverse of the density matrices

ρn = C (n)C ∗(n).

These matrices are typically ill-conditioned. This leads to a severe
stepsize restriction with usual numerical integrators.

Ad-hoc remedy: regularization of the density matrices
ρn = C (n)C ∗(n) to ρn + σ2I with a not too small σ > 0.

Novelty in this talk: Numerical integrator for the MCTDH
equations of motion which can use stepsizes that are not restricted
by ill-conditioned density matrices, without any regularization.



MCTDH integrator

A step of the integrator alternates between

I orthogonal matrix decompositions and

I solving linear systems of differential equations (by Lanczos).

The MCTDH density matrices are nowhere computed, nor are their
inverses.
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Equivalent formulations of
dynamical low-rank approximation

I Ẏ ∈ TYMr such that ‖Ẏ − Ȧ‖ = min!

I 〈Ẏ − Ȧ, δY 〉 = 0 for all δY ∈ TYMr

I Ẏ = P(Y )Ȧ with P(Y ) = orth. projection onto TYMr :

P(Y )Ȧ = ȦPR(Y T ) − PR(Y )ȦPR(Y T ) + PR(Y )Ȧ

Idea: split the projection

L. & Oseledets 2014



Splitting integrator, abstract form

1. Solve the differential equation

ẎI = ȦPR(Y T
I )

with initial value YI (t0) = Y0 for t0 ≤ t ≤ t1.

2. Solve
ẎII = −PR(YII )ȦPR(Y T

II )

with initial value YII (t0) = YI (t1) for t0 ≤ t ≤ t1.

3. Solve
ẎIII = PR(YIII )Ȧ

with initial value YIII (t0) = YII (t1) for t0 ≤ t ≤ t1.

Finally, take Y1 = YIII (t1) as an approximation to Y (t1).



Solving the split differential equations

Write rank-r matrix Y ∈ Cm×n (non-uniquely) as

Y = USV ∗

where U ∈ Cm×r and V ∈ Cn×r have orthonormal columns, and
S ∈ Cr×r . Then, the projection becomes

P(Y )Ȧ = ȦVV ∗ − UU∗ȦVV ∗ + UU∗Ȧ.

The solution of 1. is given by

YI = UISIV
T
I with (UISI )

˙ = ȦVI , V̇I = 0 :

UI (t)SI (t) = UI (t0)SI (t0) + (A(t)− A(t0))VI (t0), VI (t) = VI (t0)

and similarly for 2. and 3.



Splitting integrator, practical form

Start from Y0 = U0S0V
T
0 ∈Mr .

1. With the increment ∆A = A(t1)− A(t0), set

K1 = U0S0 + ∆AV0

and orthogonalize:
K1 = U1S̃1,

where U1 ∈ Rm×r has orthonormal columns, and S̃1 ∈ Rr×r .

2. Set S̃0 = S̃1 − UT
1 ∆AV0.

3. Set L1 = V0S̃
T
0 + ∆ATU1 and orthogonalize:

L1 = V1S
T
1 ,

where V1 ∈ Rn×r has orthonormal columns, and S1 ∈ Rr×r .

The algorithm computes a factorization of the rank-r matrix

Y1 = U1S1V
T
1 ≈ Y (t1).



Splitting integrator, cont.

I Use symmetrized variant (Strang splitting)

I For a matrix differential equation i Ȧ = H[A]:
in substep 1. solve

i K̇ = H[KV T
0 ]V0, K (t0) = U0S0

by a step of a numerical method (e.g., Lanczos),
and similarly in substeps 2. and 3.



ODEs for dynamical low-rank approximation

Y = USV T

with

U̇ = (Im − UUT )ȦV S−1

V̇ = (In − VV T )ȦTUS−T

Ṡ = UT ȦV

What if S is ill-conditioned? (effective rank smaller than r)



An exactness result for the splitting method

If A(t) has rank r , then the splitting integrator is exact:

Y1 = A(t1)

Ordering of the splitting is essential! (KSL, not KLS)



Approximation is robust to small singular values

CL, Ivan Oseledets, A projector-splitting integrator for dynamical low-rank approximation, BIT 54 (2014), 171-188.

E. Kieri, CL, Hanna Walach, Discretized dynamical low-rank approximation in the presence of small singular values,
Preprint 2015, submitted.



Remarks on the proof

The method splits P(Y ) = PI (Y )− PII (Y ) + PIII (Y ) in

Ẏ = P(Y )F (t,Y ).

Difficulty: cannot use the Lipschitz continuity of the tangent space
projection P(·) and its subprojections, because the Lipschitz
constants become large for small singular values.

Rescue:

I use the previous exactness result

I use the conservation of the subprojections in the substeps
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Relating back to the matrix case

The Tucker tensor Y = C Xd
n=1 Un has the n-mode matrix

unfolding

Y (n) = UnC (n)

⊗
k 6=n

U>k ,

where C (n) ∈ Cr×rd−1
is the n-mode matrix unfolding of the core

tensor C ∈ Crd . We orthonormalize

C>(n) = QnS>n ,

where Qn ∈ Crd−1×r has orthonormal columns, and Sn ∈ Cr×r . On
introducing V>n = Q>n

⊗
k 6=n U>k , we have, like in the matrix case,

Y (n) = UnSnV>n .

In MCTDH terminology, the columns of V n represent an
orthonormalized set of single-hole functions.



Tucker tensor tangent space projector

Tucker tensor Y = C Xd
n=1 Un has the n-mode matrix unfolding

Y (n) = UnSnV>n ,

where Sn ∈ Cr×r , and V n =
(⊗

k 6=n Uk

)
Qn ∈ CKd−1×r has

orthonormal columns. For Z ∈ CK×···×K and for n = 1, . . . , d we
denote

P+
n (Y )Z = tenn

(
Z (n)V nV>n )

P−n (Y )Z = tenn
(
UnU∗nZ (n)V nV>n )

P0(Y )Z = Z
d

X
n=1

UnU∗n.

Then, the orthogonal projection P(Y ) onto the tangent space
TYMr is given as

P(Y ) =
d∑

n=1

(
P+
n (Y )− P−n (Y )

)
+ P0(Y ).



MCTDH projector-splitting integrator

The splitting integrator that results from the above additive
decomposition of the tangent space projection alternates between

I orthogonal matrix decompositions and

I solving linear systems of single-particle differential equations,
which can be done efficiently by Lanczos approximations.

The splitting integrator can be implemented at a

• computational cost per time step that is about the same as
for existing MCTDH integrators, but

• allowing for larger time steps

• without requiring any regularization.

The MCTDH density matrices are nowhere computed, nor are their
inverses.



Implementation and extensions

I First implementation and tests by Benedikt Kloss
(excellent master student with Irene Burghardt):
Python implementation, compact code, observes good
behaviour and speedup compared with MCTDH code

I Extension to multilayer MCTDH conceptually straightforward
(hierarchical Tucker tensor format)

I Projector-splitting integrator for tensor trains (= MPS) in:

CL, I. Oseledets, B. Vandereycken, Time integration of tensor trains, SIAM J. Numer. Anal. 53 (2015),
917-941.

J. Haegeman, CL, I. Oseledets, B. Vandereycken, F. Verstraete, Unifying time evolution and optimization

with matrix product states, arXiv:1408.5056.

I Extension to MCTDHF and MCTDHB for fermions/bosons
feasible (needs yet to be done)





Propagation of the basis, forward loop

For n = 1, . . . , d do the following:

1. For the n-mode matrix unfolding C 0,n−1
(n) ∈ Cr×rd−1

of the

core tensor C 0,n−1 decompose, using QR or SVD,(
C 0,n−1

(n)

)>
= Q0

nS
0,>
n ,

where Q0
n ∈ Crd−1×r has orthonormal cols., and S0

n ∈ Cr×r .

2. Set K 0
n = U0

nS
0
n.

3. With V 0,>
n = Q0,>

n

⊗
k<n U1/2,>

n ⊗
⊗

k>n U0,>
n ∈ Cr×Kd−1

solve the linear initial value problem on CK×r from t0 to t1/2,

iK̇n(t) = matnH[tenn(Kn(t)V 0,>
n )]V 0

n, Kn(t0) = K 0
n.

4. Decompose, using QR or SVD,

Kn(t1/2) = U1/2
n S̃

1/2

n ,

where U1/2
n ∈ CK×r has orthonormal cols., and S̃

1/2

n ∈ Cr×r .



Propagation of the basis, forward loop (cont.)

5. Solve the linear initial value problem on Cr×r backward in
time from t1/2 to t0,

i Ṡn(t) = U1/2,∗
n matnH[tenn(U1/2

n Sn(t)V 0,>
n )]V 0

n, Sn(t1/2) = S̃
1/2

n ,

and set S̃
0

n = Sn(t0).

6. Define the core tensor C 0,n ∈ Crd by setting its n-mode
matrix unfolding to (

C 0,n
(n)

)>
= Q0

nS̃
0,>
n .



Propagation of the core tensor

Solve the linear initial value problem on Crd from t0 to t1,

i Ċ (t) = H
[
C (t)

d

X
n=1

U1/2
n

] d

X
n=1

U1/2,∗
n , C (t0) = C 0,d .

Set C 1,d = C (t1).



Propagation of the basis, backward loop

For n = d down to 1 do the following:

6’. For the n-mode matrix unfolding C 1,n
(n) ∈ Cr×rd−1

of the core

tensor C 1,n decompose, using QR or SVD,(
C 1,n

(n)

)>
= Q1

nŜ
1,>
n ,

where Q1
n ∈ Crd−1×r has orthonormal cols., and Ŝ

1

n ∈ Cr×r .

5’. With the notation V 1,>
n = Q1,>

n

⊗
k<n U1/2,>

n ⊗
⊗

k>n U1,>
n

solve the linear initial value problem on Cr×r backward in
time from t1 to t1/2,

i Ṡn(t) = U1/2,∗
n matnH[tenn(U1/2

n Sn(t)V 1,>
n )]V 1

n, Sn(t1) = Ŝ
1

n,

and set Ŝ
1/2

n = Sn(t1/2).



Propagation of the basis, backward loop (cont.)

4’. Set K 1/2
n = U1/2

n Ŝ
1/2

n .

3’. Solve the linear initial value problem on CK×r from t1/2 to t1,

iK̇n(t) = matnH[tenn(Kn(t)V 1,>
n )]V 1

n, Kn(t1/2) = K 1/2
n .

2’. Decompose, using QR or SVD,

Kn(t1) = U1
nS

1
n,

where U1/2
n ∈ CK×r has orthonormal columns, and

S1
n ∈ Cr×r .

1’. Define the core tensor C 1,n−1 ∈ Crd by setting its n-mode
matrix unfolding to (

C 1,n−1
(n)

)>
= Q1

nS
1,>
n .

Finally, take the core tensor at time t1 as C 1 = C 1,0. The
algorithm has thus computed the factors in the Tucker tensor
decomposition Y 1 = C 1 Xd

n=1 U1
n.



Approximation is robust to small singular values

Ȧ = F (t,A), A(t0) = Y0 ∈Mr

I F is locally Lipschitz-continuous

I ‖(I − P(Y ))F (t,Y )‖ ≤ ε for all Y ∈Mr .

Yn ∈Mr result of the projector-splitting integrator after n steps
with stepsize h

Theorem

‖Yn − A(tn)‖ ≤ c1ε+ c2h for tn ≤ T ,

where c1, c2 depend only on the local Lipschitz constant and
bound of F , and on T .

E. Kieri, CL, Hanna Walach, Discretized dynamical low-rank approximation in the presence of small singular values,
Preprint 2015, submitted.
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