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Setting

Time-dependent Schrodinger equation

OY
IE == HT,[)
for the wavefunction ¢ = ¢(x, ..., Xq, t)

MCTDH: model reduction via low-rank tensor approximation

Meyer, Manthe & Cederbaum 1990 (first MCTDH paper)
Meyer, Gatti & Worth 2009 (MCTDH book)



Galerkin method / Full configuration interaction

With L2-orthonormal basis functions <,0J'-’ (forj=1,...,K in each
mode n=1,...,d), approximate the wave function by

¢(X1;---7Xda Z Zall7 i QDII(X]-) @Z(Xd%

=1 ig=1

where the time-dependent coefficient tensor
A(t) = (.., (1)) € Co K = €0
satisfies a linear tensor differential equation
iA(t) = HIA(t)]

with a discrete Hamiltonian H : (CKd — (CKd.

This system is not directly tractable because of its sheer size.



Tucker tensor format

Approximate, with r < K,

r r
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Single-particle matrices U, = (uf;) € CK*r (for n=1,...,d) have
orthonormal columns u? € ck.
Core tensor C = (cj,,...j,) € C™>*".

Storage is reduced from K9 to r¢ + dKr entries.

Shorthand tensor notation

d
AxY=Cx1U;---xqUg4=C )_<1Un.



MCTDH

The MCTDH method combines
> low-rank tensor approximation in the Tucker format with the

» Dirac-Frenkel time-dependent variational principle.



MCTDH

M, = manifold of all Tucker tensors where each single-mode
matrix unfolding of the core tensor is of full rank r

Ty M, = tangent space of M, at Y ¢ M,

Approximate A(t) ~ Y(t) € M, by

(iY(t) = H[Y(t)],6Y) =0 forall §Y € TyM,.

With the orthogonal projection P(Y') onto the tangent space
Ty M,, this can be equivalently stated as

V() = P(Y(£) HIY (1))

ODE on a tensor manifold



MCTDH equations of motion

. d
iC=H[Y] X U,
iU, = (I — U,U;;) mat, (H[Y] én U;) C

with the pseudo-inverse C;,, = C(C(n) C’("n))_l of the
n-mode matricization of the core tensor C(,) = mat,(C), and with

which is taken as the approximation to A(t).

These differential equations need to be solved numerically.



lll-conditioned MCTDH density matrices

MCTDH equations contain the inverse of the density matrices

Pn=CmCln)-

These matrices are typically ill-conditioned. This leads to a severe
stepsize restriction with usual numerical integrators.

Ad-hoc remedy: regularization of the density matrices
P, = C(,,)Cfn) to p, + o21 with a not too small o > 0.

Novelty in this talk: Numerical integrator for the MCTDH
equations of motion which can use stepsizes that are not restricted
by ill-conditioned density matrices, without any regularization.



MCTDH integrator

A step of the integrator alternates between
» orthogonal matrix decompositions and

» solving linear systems of differential equations (by Lanczos).

The MCTDH density matrices are nowhere computed, nor are their
inverses.
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Equivalent formulations of
dynamical low-rank approximation

» YeTyM, suchthat |Y —A| = min!
» (Y —A 6Y)=0 forall 6Y € TyM,

» Y = P(Y)A with P(Y) = orth. projection onto Ty M,:

P(Y)A = APg(y1) — Pr(v)APRr(yT) + Pr(v)A

Idea: split the projection

L. & Oseledets 2014



Splitting integrator, abstract form

1. Solve the differential equation
Y[ — AP’R(Y/T)
with initial value Y;(tp) = Yo for to < t < ty.

2. Solve _ _
Yi = *PR(YH)APR(Y,,T)

with initial value Yj(tp) = Yi(t1) for to <t < t;.

3. Solve _ _
Y = Pry,nA

with initial value Y[//(to) = Y//(tl) for tg <t < t1.

Finally, take Y1 = Yj;(t1) as an approximation to Y'(t1).



Solving the split differential equations

Write rank-r matrix Y € C™*" (non-uniquely) as
Y = Usv*

where U € C™*" and V € C"™" have orthonormal columns, and
S € C™". Then, the projection becomes

P(Y)A = AW* — UU*AWW* + UU*A.
The solution of 1. is given by
Y, = U5 VIT with (U/S/)- = AV/, V/ =0:

Ui(t)Si(t) = Ui(to)Si(to) + (A(t) — A(to)) Vi(to),  Vi(t) = Vi(to)

and similarly for 2. and 3.



Splitting integrator, practical form

Start from Yy = UpSo VOT e M,.
1. With the increment AA = A(t1) — A(tp), set

Ki = UpSg + AA V
and orthogonalize: B
Ki = U151,

where U; € R™*" has orthonormal columns, and §1 e R™r,
2. Set So =5, — U AA V.
3. Set [ = VogoT + AATU; and orthogonalize:

Ly = WS/,

where Vi € R™" has orthonormal columns, and S; € R™*".

The algorithm computes a factorization of the rank-r matrix

Y1 =US VlT ~ Y(tl).



Splitting integrator, cont.

» Use symmetrized variant (Strang splitting)

» For a matrix differential equation iA = H[A]:
in substep 1. solve

iK = HIKVY Vo,  K(to) = UoSo

by a step of a numerical method (e.g., Lanczos),
and similarly in substeps 2. and 3.



ODEs for dynamical low-rank approximation

Yy =usv’
with
U= (ln,— UUT)AVS™?
V=_(~,—VwWThATusT
S=UTAV

What if S is ill-conditioned? (effective rank smaller than r)



An exactness result for the splitting method

If A(t) has rank r, then the splitting integrator is exact:

Y1 = A(tl)

Ordering of the splitting is essential! (KSL, not KLS)



Approximation is robust to small singular values

CL, Ivan Oseledets, A projector-splitting integrator for dynamical low-rank approximation, BIT 54 (2014), 171-188.

E. Kieri, CL, Hanna Walach, Discretized dynamical low-rank approximation in the presence of small singular values,
Preprint 2015, submitted.



Remarks on the proof

The method splits P(Y) = Pi(Y) — Py(Y) + Py (Y) in
Y = P(Y)F(t,Y).

Difficulty: cannot use the Lipschitz continuity of the tangent space
projection P(-) and its subprojections, because the Lipschitz
constants become large for small singular values.

Rescue:
> use the previous exactness result

> use the conservation of the subprojections in the substeps
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Relating back to the matrix case

The Tucker tensor Y = Cngl U, has the n-mode matrix
unfolding

T
Y(n) = UnC(n) ® Uk 3
k#n

where C () € €<~ is the n-mode matrix unfolding of the core

tensor C € Cr. We orthonormalize
T T
C(n) = Qnsn’

where Q, € C"'%" has orthonormal columns, and S, € C™*". On
introducing V! = @, Rkrn U], we have, like in the matrix case,

Y =US,V,.

In MCTDH terminology, the columns of V, represent an
orthonormalized set of single-hole functions.



Tucker tensor tangent space projector

Tucker tensor Y = Cngl U, has the n-mode matrix unfolding
Y =U,S.V,,
where S, € C"™*", and V, = (®k¢n U)Q, € CKY'%r has

orthonormal columns. For Z € CK**K and for n=1,...,d we
denote

P(Y)Z = ten,(Z(,)V» v))
(Y)Z_tenn(U U Z(,,)V V )
Po(Y)Z = Z >_<1 U,U*.

Then, the orthogonal projection P(Y) onto the tangent space
Ty M, is given as

2
=
I
(]
—

PE(Y) = Py (Y)) + Po(Y).



MCTDH projector-splitting integrator

The splitting integrator that results from the above additive
decomposition of the tangent space projection alternates between

» orthogonal matrix decompositions and

» solving linear systems of single-particle differential equations,
which can be done efficiently by Lanczos approximations.

The splitting integrator can be implemented at a

e computational cost per time step that is about the same as
for existing MCTDH integrators, but

e allowing for larger time steps

e without requiring any regularization.

The MCTDH density matrices are nowhere computed, nor are their
inverses.



Implementation and extensions

» First implementation and tests by Benedikt Kloss
(excellent master student with Irene Burghardt):
Python implementation, compact code, observes good
behaviour and speedup compared with MCTDH code

» Extension to multilayer MCTDH conceptually straightforward
(hierarchical Tucker tensor format)
» Projector-splitting integrator for tensor trains (= MPS) in:

CL, I. Oseledets, B. Vandereycken, Time integration of tensor trains, SIAM J. Numer. Anal. 53 (2015),
917-941.

J. Haegeman, CL, |. Oseledets, B. Vandereycken, F. Verstraete, Unifying time evolution and optimization
with matrix product states, arXiv:1408.5056.

» Extension to MCTDHF and MCTDHB for fermions/bosons
feasible (needs yet to be done)






Propagation of the basis, forward loop

For n=1,...,d do the following:
1. For the n-mode matrix unfolding C?,’f)’_l € Cr ™" of the
core tensor C%"~1 decompose, using QR or SVD,
0,n—1\T _ ~0¢0,T
(C:(nr)7 ) - Qnsn )
where QO € Cr 7% has orthonormal cols., and S?, e Ccrxr,
2. Set K9 = U%s°.
3. With VO = @07 Qy-n U 1/2 T Rson U T c CrxK!
solve the linear initial value problem on CK*" from t° to t1/2,

iKn(t) = mat,Hten,(Kn(t) VO TIVY, K, (%) = KO.

4. Decompose, using QR or SVD,

~1/2

where U}/2 € CK* has orthonormal cols., and S/~ € C™*".



Propagation of the basis, forward loop (cont.)

5. Solve the linear initial value problem on C™" backward in
time from t1/2 to t9,

i$,(2) = UY>" mat, Hlten,(UY2S () VO TV, §,(£72) = S/

n

and set g?, = S5,(t%).

6. Define the core tensor C%" ¢ (Crd by setting its n-mode
y g
matrix unfolding to

(€’ =35,



Propagation of the core tensor

Solve the linear initial value problem on C from t° to t!,
. d 1/2 d 1/2,% 0 0.d
iC(t) = H|C(t) )§1Un )SIUn - C(t") = C™e.

Set C19 = C(t).



Propagation of the basis, backward loop

For n = d down to 1 do the following:
6'. For the n-mode matrix unfolding C(ln')’ € Cr*r*™! of the core
tensor C1" decompose, using QR or SVD,

AlT

(Cey) = Qi5,

d—1 ~1
where Ql € C™ "% has orthonormal cols., and S,, € C"™*".

5'". With the notation V1 T Ql 3 ®k<,, 1/2 ! ® ®k>n Ul !

solve the linear initial value problem on (Crxr backward in
time from t! to t1/2,

1

n?’

i§,(t) = UY/**mat,H[ten,(UY?S,(t)VEVL, S, (t1)=S§

1/2

and set S = S,(t/?).



Propagation of the basis, backward loop (cont.)

& Set KY? = yY?8Y*

3". Solve the linear initial value problem on CKX* from t1/2 to t!,

iK o(t) = maty Hltenn(Kn(OVEIVE, - Ko(t?) = K32

2'. Decompose, using QR or SVD,
K.(t') = Ulst

n~n

where U%/z € CK*r has orthonormal columns, and
1
S, eCr. ,
1'. Define the core tensor C1"~1 € C™ by setting its n-mode
matrix unfolding to
1,n—1 o 1¢l,T
(i) = @Sy
Finally, take the core tensor at time t! as C1 = C10. The

algorithm has thus computed the factors in the Tucker tensor
decomposition Y1 = C1X9_, UL



Approximation is robust to small singular values

A=F(t,A), Alt)=YoeM,
» F is locally Lipschitz-continuous
» ||(I = P(Y))F(t,Y)|| <e forall Y € M,.

Y, € M, result of the projector-splitting integrator after n steps
with stepsize h

Theorem
| Yn — A(tn)|| < c1e + c2h for t, < T,

where c1, o depend only on the local Lipschitz constant and
bound of F, and on T.

E. Kieri, CL, Hanna Walach, Discretized dynamical low-rank approximation in the presence of small singular values,
Preprint 2015, submitted.
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