Efficient Algorithms for Semiclassical Quantum Dynamics

David Sattlegger

joint work with Caroline Lasser and Manfred Liebmann

Banff, January 27, 2016

David Sattlegger

Efficient Algorithms for Semiclassical Quantum Dynamics

Time-dependent semiclassical Schrödinger equation

Goal: Find solution to

$$\mathrm{i} \ arepsilon \ rac{d}{dt} \psi(t) = -rac{1}{2} arepsilon^2 igtriangle \psi(t) + V \ \psi(t)$$

with $\psi(0) = \psi_0 \in \mathrm{L}^2(\mathbb{R}^d)$, $\|\psi_0\|_{\mathrm{L}^2} = 1$ and $arepsilon := \sqrt{rac{m_e}{M_n}} \ll 1$.

Self-adjoint $H := -\frac{1}{2}\varepsilon^2 \bigtriangleup + V$ generates U_t ,

$$\psi(t) = \mathbf{U}_t \psi_0 = \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon}t \, \mathrm{H}} \psi_0$$

for all $t \in \mathbb{R}$.

David Sattlegger

Efficient Algorithms for Semiclassical Quantum Dynamics

2016-01-27

Time-dependent semiclassical Schrödinger equation

Goal: Find solution to

$$\mathrm{i} \varepsilon \frac{d}{dt} \psi(t) = -\frac{1}{2} \varepsilon^2 \bigtriangleup \psi(t) + V \psi(t)$$

with $\psi(\mathbf{0}) = \psi_{\mathbf{0}} \in \mathrm{L}^2(\mathbb{R}^d)$, $\|\psi_{\mathbf{0}}\|_{\mathrm{L}^2} = 1$ and $\varepsilon := \sqrt{\frac{m_e}{M_n}} \ll 1$.

- high dimensional system
- small ε produces highly oscillatory solutions

...

Gaussian wave packets

$$g_{z}^{\varepsilon}(x) := (\pi\varepsilon)^{-\frac{d}{4}} \exp\left(-\frac{1}{2\varepsilon}|x-q|^{2} + \frac{1}{\varepsilon}p \cdot (x-q)\right)$$

$$z = \binom{q}{p} \in \mathbb{R}^{2d}$$

$$\begin{split} \psi &= (2\pi\varepsilon)^{-d} \int_{\mathbb{R}^{2d}} g_z^{\varepsilon} \langle g_z^{\varepsilon}, \psi \rangle \, \mathrm{d}z \quad \text{for all } \psi \in \mathrm{L}^2(\mathbb{R}^d) \\ \mathrm{U}_t \psi &= (2\pi\varepsilon)^{-d} \int_{\mathbb{R}^{2d}} (\mathrm{U}_t g_z^{\varepsilon}) \, \langle g_z^{\varepsilon}, \psi \rangle \, \mathrm{d}z \end{split}$$

David Sattlegger

Efficient Algorithms for Semiclassical Quantum Dynamics

2016-01-27

Herman–Kluk Propagator

Definition (Herman & Kluk, 1984)

$$\mathcal{I}_t \psi := (2\pi\varepsilon)^{-d} \int_{\mathbb{R}^{2d}} \left(u(t,z) \,\mathrm{e}^{\frac{\mathrm{i}}{\varepsilon} S(t,z)} g_{\Phi^t(z)}^\varepsilon \right) \langle g_z^\varepsilon, \psi \rangle \,\,\mathrm{d} z$$

depends on

- classical flow $\Phi^t = (X^t, \Xi^t) : \mathbb{R}^{2d} \to \mathbb{R}^{2d}$,
- classical action integral $S(t,z) := \int_0^t \left(\frac{d}{d\tau} X^{\tau}(z) \cdot \Xi^{\tau}(z) h(\Phi^{\tau}(z)) \right) \, \mathrm{d}\tau$,
- Herman–Kluk factor u(t, z)

$$u(t,z) := \sqrt{2^{-d} \det(\partial_q X^t(z) + \partial_\rho \Xi^t(z) + \mathrm{i} (\partial_q \Xi^t(z) - \partial_\rho X^t(z)))}.$$

David Sattlegger

Herman–Kluk Propagator

$$\begin{split} \mathbf{U}_t \psi &= (2\pi\varepsilon)^{-d} \int_{\mathbb{R}^{2d}} (\mathbf{U}_t g_z^\varepsilon) \quad \langle g_z^\varepsilon, \psi \rangle \, \mathrm{d}z \\ \mathcal{I}_t \psi &= (2\pi\varepsilon)^{-d} \int_{\mathbb{R}^{2d}} \left(u(t,z) \,\mathrm{e}^{\frac{\mathrm{i}}{\varepsilon} S(t,z)} g_{\Phi^t(z)}^\varepsilon \right) \langle g_z^\varepsilon, \psi \rangle \, \mathrm{d}z \end{split}$$

Theorem (Swart & Rousse, 2009)

 \mathcal{I}_t is a bounded operator on $L^2(\mathbb{R}^d)$. For every T > 0, there exists C > 0 such that for all $\varepsilon > 0$

$$\sup_{\in [0,T]} \|\mathcal{I}_t - \mathbf{U}_t\| \le C \varepsilon.$$

General strategy

1. High-dimensional quadrature

$$\mathcal{I}_t \psi = \int_{\mathbb{R}^{2d}} f(z) \, \mathrm{d} z \approx \frac{1}{M} \sum_{m=1}^M f(z_m).$$

2. Calculate $\Phi^t(z_m)$, $S(t, z_m)$, and $u(t, z_m)$ by solving a system of ODEs with a symplectic integrator.

Quadrature

Factorization

$$(2\piarepsilon)^{-d} \langle g_z^arepsilon, \psi_0
angle =: r_0(z) \cdot \mu_0(z), \quad z \in \mathbb{R}^{2d}$$

where $\mu_0 : \mathbb{R}^{2d} \to \mathbb{R}$ is a probability distribution.

Rewrite \mathcal{I}_t as weighted integral

$$\mathcal{I}_t \psi_0 = \int_{\mathbb{R}^{2d}} r_0(z) \, u(t,z) \, \mathrm{e}^{\frac{\mathrm{i}}{\varepsilon} S(t,z)} \, g_{\Phi^t(z)}^{\varepsilon} \, \mathrm{d}\mu_0(z).$$

David Sattlegger

Efficient Algorithms for Semiclassical Quantum Dynamics

Quadrature

Define $\psi_M(t) \in \mathrm{L}^2(\mathbb{R}^d)$ by

$$\psi_{M}(t) := \frac{1}{M} \sum_{m=1}^{M} r_{0}(z_{m}) u(t, z_{m}) e^{\frac{i}{\varepsilon} S(t, z_{m})} g_{\Phi^{t}(z_{m})}^{\varepsilon}$$

with $z_1, \ldots, z_M \in \mathbb{R}^{2d}$ chosen as

- independent samples of µ₀ (Monte Carlo quadrature), or
- low μ_0 -discrepancy points (quasi-Monte Carlo quadrature).

Monte Carlo quadrature

David Sattlegger

9

Time discretization

 $\Phi^t(z_m)$ is solution to

$$\dot{z}(t) = J \nabla h(z(t)), \quad z(0) = z_m. \tag{\mathbb{R}^{2d}}$$

 $S(t, z_m)$ is solution to

$$\dot{S}(t, z_m) = \frac{1}{2} |\Xi^t(z_m)|^2 - V(X^t(z_m)), \quad S(0, z_m) = 0.$$
 (R)

$$u(t, z_m) = \sqrt{2^{-d} \det(\partial_q X^t(z_m) + \partial_p \Xi^t(z_m) + i(\partial_q \Xi^t(z_m) - \partial_p X^t(z_m)))}$$

is calculated from

$$\frac{d}{dt}\mathrm{D}\Phi^{t}(z_{m}) = J \cdot \nabla^{2}h(\Phi^{t}(z_{m})) \cdot \mathrm{D}\Phi^{t}(z_{m}). \qquad (\mathbb{R}^{2d \times 2d})$$

David Sattlegger

Efficient Algorithms for Semiclassical Quantum Dynamics

Time discretization

Theorem

Calculate $\tilde{\Phi}^t$, \tilde{S} and \tilde{u} with symplectic method of order $\gamma \in \mathbb{N}$. Set

$$\tilde{\mathcal{I}}_t \psi := (2\pi\varepsilon)^{-d} \int_{\mathbb{R}^{2d}} \tilde{u}(t,z) \, \mathrm{e}^{\frac{\mathrm{i}}{\varepsilon} \tilde{S}(t,z)} g^{\varepsilon}_{\tilde{\Phi}^t(z)} \, \langle g^{\varepsilon}_z, \psi \rangle \, \, \mathrm{d}z.$$

For all t > 0 there exist $c_0, c_1, c_2 > 0$ such that for all $\varepsilon > 0$

$$\left\| \widetilde{\mathcal{I}}_t - \mathrm{U}_t \right\| \leq \varepsilon \ \textit{c}_0 + rac{ au^\gamma}{arepsilon} \ \textit{c}_1 + au^\gamma \ \textit{c}_2 + \mathcal{O}(au^{\gamma+2})$$

where $\tau > 0$ is the time step size.

Time evolution of error

for harmonic potential

Dependence on time step size

Efficient implementation

Idea: Solve

$$\dot{\mathcal{Z}}(t,z_m) = \mathcal{F}\left(\mathcal{Z}(t,z_m)
ight) \in \mathbb{R}^{4d^2+2d+2}$$

independently for all z_m

- (MPI and OpenMP) parallelisation + (SSE/AVX) vectorisation
- Automated C++ code generation by computer algebra system

Example: Henon–Heiles potential for d = 6

$$V(x) = \sum_{k=1}^{6} \frac{1}{2} x_k^2 + \sigma \sum_{k=1}^{5} \left(x_k x_{k+1}^2 - \frac{1}{3} x_k^3 \right) + \frac{\sigma^2}{16} \sum_{k=1}^{5} \left(x_k^2 + x_{k+1}^2 \right)^2$$

M = 2²² sampling points resulting in 331,350,016 scalar ODEs
 200 time steps

David Sattlegger

Efficient Algorithms for Semiclassical Quantum Dynamics

Example

Henon–Heiles potential for d = 6, $\varepsilon = 10^{-2}$, $\tau = 0.1$, $\sigma = \frac{1}{\sqrt{80}}$, $\psi_0 = g^{\varepsilon}_{(2,...,2,0,...,0)}$

Parallelization

Parallelization + Vectorization

Expectation values

Egorov's Theorem / LSC - IVR

$$\langle \psi(t) | \mathrm{A} | \psi(t)
angle - \int_{\mathbb{R}^{2d}} (a \circ \Phi^t)(z) W(\psi_0)(z) \, \mathrm{d}z = \mathcal{O}(\varepsilon^2)$$

Example: Henon-Heiles potential

$$V(x) = \frac{1}{2} \sum_{k=1}^{d} x_k^2 + 1.8436 \sum_{k=1}^{d-1} \left(x_k x_{k+1}^2 - \frac{1}{3} x_k^3 \right) + 0.4 \sum_{k=1}^{d-1} \left(x_k^2 + x_{k+1}^2 \right)^2$$

with $\varepsilon = 0.0037$.

dim	2 imes Intel Xeon E5-2650	1 imes Nvidia Tesla K20	speedup
16	4.260 s	0.641 s	6.646
32	$10.386\mathrm{s}$	1.180 s	8.802
64	$24.793\mathrm{s}$	4.412 s	5.619
128	$109.393\mathrm{s}$	$29.266\mathrm{s}$	3.738
256	219.183 s	71.980 s	3.045
512	$454.614\mathrm{s}$	$155.915\mathrm{s}$	2.916

Thank you for your attention!