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1 Introduction and Overview of the Field
The main goal of this workshop was to foster communication between chemists developing mathematical and
computational tools for studying the motion of atoms in polyatomic molecules and mathematicians interested
in numerical methods for high-dimensional problems and in semi-classical mechanics. Scientists in these two
groups benefit from talking with one another, and they have traditionally not done communicated well. Often,
the two groups have used different terminology for the same thing; sometimes they have developed very
similar ideas in parallel. Development of new methods and ideas is facilitated by exchange and interaction
among the groups. Although there is a lot of overlap, scientists in the two groups sometimes lose track of the
priorities and interests of members of the other group. For this reason also, interaction is important.

Mathematicians studying quantum molecular problems have often concentrated on diatomic molecules
and semi-classical methods, while chemists have been interested in larger molecules and new computational
tools. To compute properties of molecules with more than three atoms it is necessary to deal with the “curse
of dimensionality” because 3N coordinates are required to describe the configuration of N particles. Even if
one is just studying the motion of the nuclei, a molecule with 5 atoms requires computations in 15 dimensions.
Effective computational techniques exist for studying partial differential equations in up to three dimensions,
but computations in higher dimensions are harder and have only recently been the focus of attention from
mathematicians. This is perhaps due to the fact that most engineering problems are 3D because we live in
a 3D world. It is always possible to eliminate, from the 3N coordinates, three coordinates associated with
the motion of the center of mass. When one is interested in total angular momentum equal to zero (J = 0)
solutions, it also possible to remove three more coordinates reducing the dimensionality to 3N − 6. One can
easily write down the time–dependent and time–independent Schrödinger equations one would like to solve,
but they are very hard to solve because of the typically high dimensionality.

At the workshop, mathematicians and chemists presented new methods for solving Schrödinger equa-
tions. There is a lot of overlap. Both mathematicians and chemists are developing generalized surface hop-
ping methods for non-adiabatic dynamics; [31, 13] both mathematicians and chemists are developing sparse
grid and sparse basis methods for high-dimensional problems; [28, 1, 2, 3, 26, 35, 36, 17] both mathemati-
cians and chemists are developing methods that exploit the advantages of low-rank tensor representations
also for high-dimensional problems; [5, 27] both mathematicians and chemists are developing semi-classical
methods [18, 19, 20, 38, 25] that exploit the relatively large masses of nuclei (compared to those of electrons).
In Banff there was an exchange about developments that have been achieved so far and some cross fertiliza-
tion. It helps mathematicians to be told what problems are important in chemistry. It helps chemists to be
given rigorous results about what is possible. Chemists have a tendency to explore and test ideas without
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analyzing them in detail. Mathematicians are often able to learn from and then render more precise ideas
that chemists propose. Algorithms developed by mathematicians are almost always more general than those
developed by chemists. At the Banff meeting both sides searched for ways in which ideas of mathematicians
can be applied to chemistry.

In many prior conferences and workshops that brought together mathematicians and chemistry working
on molecular dynamics, there have been significant difficulties getting chemists and mathematicians to talk to
one another in a meaningful way. Differences in nomenclature, aims, and priorities have often been barriers.
As stated above, the main goal of this workshop was to facilitate the interaction between the two groups, and
in this regard, the workshop was very successful.

2 Recent Developments and Open Problems

2.1 Techniques for High–Dimensional Problems
2.1.1 Methods based on sparse-grid ideas

Both chemists and mathematicians presented talks about recent developments in sparse-grid ideas. The most
obvious way to solve a D dimensional differential equation is to use a method that chemists call variational
and mathematicians call Galerkin and a product basis. A product (tensor product) basis is one for which
each function is a product of functions of a single variable. Such ideas work well in 3 dimensions (e.g.,
for a molecule with 3 atoms) but fail in 12 dimensions (e.g., for a molecule with 6 atoms). They fail in 12
dimensions because the size of the product basis scales as nD where n is a representative number of basis
functions per coordinate and D is the number of coordinates. Because n is often about 10, nD is about 1012

when D=12. On present day computers, it is not possible to even store in memory a vector representing
the solution in such a basis. In the last 5 to 10 years chemists and mathematicians have begun to use ideas
originally suggested by Smolyak to mitigate problems associated with product basis sets. [37, 16, 15, 10, 23,
32, 4, 14, 17, 40, 39] Many of the prominent people in this field attended the workshop. An open problem in
this field is coping with the complicated kinetic energy operators that occur when curvilinear coordinates are
used. Another is the difficulty of exploiting molecular symmetry with sparse-grid type methods.

2.1.2 Methods based on using low rank tensor

This is a field in which chemists were far ahead of mathematicians, but mathematicians have caught up
quickly. Several of the key people working in this field were also at the workshop. The coefficients that
represent a D dimensional wavefunction in a product basis form a Dth order tensor. In many cases that
tensor can be re-written in terms of tensors of lower order. If, in addition, one can find a way to directly
compute the lower order tensors from which one can build the Dth order tensor then one has a computational
method that enables one to beat the curse of dimensionality. An open problem in this area is linking iterative
eigensolvers and propagation methods to tensor methods in such a way that high precision can be achieved.
Another open problem is the re-representation of the potential energy surface (PES). [30, 34, 8, 11, 9, 24, 29]
Tensor methods cannot be used with general PESs. Many tensor-type methods work only if the PES is a
sum-of-products, what mathematicians call CP format. All methods for generating SOP PESs have important
deficiencies.

2.2 More Theoretical Issues
2.2.1 Non–adiabatic problems

There are many problems in chemistry for which interactions between different Born-Oppenheimer PESs are
important. [18, 25, 38, 21, 6, 7] Both chemists and mathematicians are developing and applying methods to
treat such problems. The usual starting point is to assume the nuclear motion on a single PES is determined
by classical mechanics and electronic transitions between PESs are determined from the rules of quantum
mechanics. It is simply too complicated to use quantum mechanics for the entire problem. The open problem
here is improving the approximations that are necessarily introduced in order to patch together quantum and
classical mechanics.
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2.2.2 Mathematics of Molecular Schrödinger Operators

Molecules have both large mass particles (nuclei) and small mass particles electrons). The usual Born–
Oppenheimer approximation employs a semi-classical approximation for the nuclei and an adiabatic approx-
imation for the electrons. Although the paper of Born and Oppenheimer was published in 1927, mathemati-
cians did not begin analyzing the situation until roughly 1980. There has now been substantial mathematical
analysis that involves one PES, and there are several papers that deal with several PES’s. [18, 25, 38, 22]
Many of the authors of those papers attended this workshop.

The simplest non-adiabatic behavior occurs at level crossings, where two PES’s intersect. Generically, the
most interesting level crossings are “conical intersections,” which require PES’s that depend on at least two
nuclear coordinates. [18, 12, 38] They do not occur in diatomic molecules. Another closely related situation
is an “avoided crossing,” in which two PES’s approach very close to one another, but do not actually intersect.
There are now a few mathematical papers that deal with that situation. [19, 20, 21, 6, 7]

The technique of “surface hopping” is frequently used in chemistry to study these situations, but there are
no mathematically rigorous papers justifying these approximations in general. [33, 31, 13] That is an area
which is begging for some mathematical analysis to be done. One would hope that workshops like this one
would stimulate mathematical work in such a direction.

In general, the workshop was effective at bringing mathematicians and chemists into discussion. The long
coffee breaks were key. One small illustration of the nature of the problem. Two of the participants, Caroline
Lasser (mathematician) and Christoph Scheurer (chemist), had never met. This would not be unusual except
for the fact that they are from the same university! At the conference they had time to learn about each
other’s (related) research. In another case a mathematician, George Hagedorn directed a chemist, Daniel
Paláez–Ruiz, to a mathematician, Stephan de Bièvre, at Paláez–Ruiz’s university.

3 Presentation Highlights
Several of the talks concentrated on “tensor methods” for trying to deal with the “curse of dimensionality.”
Those speakers included Arnaud Leclerc, Ove Christiansen, Mike Espig, Uwe Manthe, Ivan Oseledets, Rein-
hold Schneider, Phillip Thomas, and Edward Valeev. Other talks had a different approach that relied on using
sparse grids for computations. Those included Gustavo Avila, David Lauvergnat, and Christoph Scheurer.
Yet another approach using wavelets was described by Helmut Harbrecht. Other new methods for solving
the time-independent Schrd̈inger equation were presented by James Brown, Attila Czaszar, Peter Felker, and
George Hagedorn. Uwe Manthe talked about the impossibility of factorizing wavefunctions for CH+
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Several speakers talked about various methods for solving time-dependent Schrödinger problems. Those

included Volker Betz, Victor Batista, Christian Lubich, Vasile Gradinaru, Gabriel Hanna, Ray Kapral, David
Sattlegger, Stefan Teufel, and Robert Wodraszka. Other talks dealt with closely related topics involving
nuclear motion.

There were presentations on many other topics. For example, Michael Griebel and Daniel Palaez–Ruiz
talked about efficient representations of electron energy surfaces. Alain Joye and Stephanie Troppmann made
presentations related to open quantum systems in which a small system (such as a molecule) interacts with
some very large system that is regarded as a reservoir. The talks of Ramond Kapral and Gabriel Hanna also
dealt with small systems coupled to large systems.

Tomoki Ohsawa gave a presentation that concentrated on a geometric approach to quantum mechanics.
Bill Poirier described a new approach to quantum mechanics. Raymond Kapral talked about surface hopping
techniques that were also mentioned in several other talks.

Tucker Carrington, Caroline Lasser, and George Hagedorn talked about specific molecules and used ex-
amples to illustrate general techniques.

Johannes Keller talked about “spectrograms,” which are new objects for the study of semi-classical quan-
tum mechanics in phase space. David Tannor and James Brown also talked about phase space methods, and
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Jiri Vanicek talked about molecules in external electromagnetic fields. Pierre-Nicholas Roy presented a talk
about path integrals.

4 Scientific Progress Made
As indicated in the introduction, the main goal of this workshop was the sharing of information between
mathematicians and chemists. Many participants commented that this meeting was more successful than
earlier such meetings that brought the two groups of researchers together. The two groups often have closely
related goals, but they publish their results in different journals and often one group has no idea of progress
made by the other group. The speakers from each group made an effort to address the other group, which
often does not happen in such meetings. Also, some speakers welcomed the opportunity to present their work
to audiences they had never addressed before.

Both groups gained insight into activities and scientific difficulties encountered by the other group. Quite
clearly, the “curse of dimensionality” is of primary concern to people doing calculations, while semi-classical
methods are of primary concern to people doing theoretical analysis. Semi-classical methods are appropriate
for the dynamics of nuclei because of their large masses (compared to electrons). They can also be useful
for large molecules where a full quantum treatment may not be feasible. Also, in problems involving non-
adiabatic behavior, one often would like to deal with the nuclear motion easily, since the main emphasis is on
understanding what the electrons are doing.

5 Fundamental Open Questions
Mathematical semi-classical analysis is based on either the assumption that h̄ is small or that the ratio of
masses is small. In the former case semi-classical approximations work well, and in the latter cases adiabatic
approximations are appropriate. Born–Oppenheimer type approximations use both of these approximations,
and most of the theory of molecular quantum mechanics is built on the ability to sequentially solve electronic
and nuclear Schroedigner equations. Mathematicians are working on ways to improve and correct these ap-
proximations. It is important to know whether the corrections enable one to achieve the sort of accuracy
desired by chemists. The alternative is to use numerical methods. We need more tests to determine whe-
hter savings can be achieved with semi-classical and improved adiabatic approximations, without sacrifing
accuracy.

The use of tensor methods in calculations will benefit from more theoretical analysis. We need better rank
reduction methods. In the application of Smolyak methods to problems of chemical interest, more work is
needed to develop ideas to exploit symmetry. It would also be beneficial to develop good black–box methods
that can be used by non–experts.

6 Outcome of the Meeting
The two groups of researchers left the workshop with a better appreciations of the issues dealt with by the
other group. Mathematicians are beginning to make important contributions to the development of methods
for solving the high dimensional problems that are ubiquitous in chemistry.
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