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Riemann’'s zeta-function

Definition (Riemann)

For Re(s) > 1, define the zeta-function by
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Theorem (Fundamental Theorem)

@ The function ((s) has an analytic continuation to C (apart
from a simple pole at s = 1 with residue 1).
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Riemann’'s zeta-function

Definition (Riemann)

For Re(s) > 1, define the zeta-function by

(s)i=) =

n=1

Theorem (Fundamental Theorem)

@ The function ((s) has an analytic continuation to C (apart
from a simple pole at s = 1 with residue 1).

@ We have the functional equation

75T (%) () =m0 (1;5> (1 s).
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Conjecture (Riemann)
Apart from the negative evens, the zeros of ((s) satisfy Re(s) = 2.J
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Remarks

Q@ The ‘line of symmetry” for s «+— 1 —s is Re(s) = 3.
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$1 million prize problem

Conjecture (Riemann)

Apart from the negative evens, the zeros of ((s) satisfy Re(s) = 3.

v

Remarks
Q@ The ‘line of symmetry” for s «+— 1 —s is Re(s) = 3.

@ The first ‘gazillion” zeros satisfy RH (Odlyzko,...).
40 + % of the zeros satisfy RH (Selberg, Levinson, Conrey....).
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Theorem (Euler)

As a power series in t, we have

t e t—t§:§ 2
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The values ((—n)

Theorem (Euler)

As a power series in t, we have

LI VRS Y i
= —ff = =) 0 —.
1—et 2 ~ n!

Remark
This series is also a generating function for K-groups of 7. J
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A polynomial Z(s) is a zeta-polynomial if it satisfies:

@ It is arithmetic-geometric in origin.
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Definition (Manin)
A polynomial Z(s) is a zeta-polynomial if it satisfies:
@ It is arithmetic-geometric in origin.

@ For s € C we have Z(s) = £Z(1 —s).
o If Z(p) =0, then Re(p) =1/2.




Zeta-polynomials for modular form periods
Introduction and Statement of Results

Manin's Notion of Zeta-polynomials

Definition (Manin)
A polynomial Z(s) is a zeta-polynomial if it satisfies:
@ It is arithmetic-geometric in origin.

@ For s € C we have Z(s) = £Z(1 —s).
If Z(p) =0, then Re(p) = 1/2.

The values Z(—n) have a “nice” generating function




Zeta-polynomials for modular form periods
Introduction and Statement of Results

Manin's Notion of Zeta-polynomials

Definition (Manin)
A polynomial Z(s) is a zeta-polynomial if it satisfies:
@ It is arithmetic-geometric in origin.

@ For s € C we have Z(s) = £Z(1 —s).
If Z(p) =0, then Re(p) = 1/2.

The values Z(—n) have a “nice” generating function

The values Z(—n) encode arithmetic-geometric information.
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There is a theory of zeta-polynomials for modular form periods. J
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Manin's Speculation Based on Numerical Calculations

Speculation (Manin)
There is a theory of zeta-polynomials for modular form periods. J

Theorem (Main Theorem) J

Manin’s Speculation is true.
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If f € Sk(To(N)) is a newform, then the following are true:
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@ L(f,s) has an analytic continuation to C.
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Fundamental Theorem for modular L-functions

Theorem (Hecke, Atkin-Lehner, Shimura, Manin, and others)
If f € Sk(To(N)) is a newform, then the following are true:

@ L(f,s) has an analytic continuation to C.

@ IFA(f,s) = (g) [(s)L(f,s), then 3 (f) € {1} for which

A(f,s) = e(f) - A(f, k — s).
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Fundamental Theorem for modular L-functions

Theorem (Hecke, Atkin-Lehner, Shimura, Manin, and others)
If f € Sk(To(N)) is a newform, then the following are true:

@ L(f,s) has an analytic continuation to C.

@ IFA(f,s) = (g) [(s)L(f,s), then 3 (f) € {1} for which

A(f,s) = e(f) - A(f, k — s).

© There are numbers w} such that for1 < j < k—1

L(f,j) € Q- (2miy - wE.
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Critical Values and Weighted Moments

Definition (Deligne, Manin, Shimura)

If f € Sk(To(N)) is a newform, then its critical L-values are

(L(F,1), L(f,2), L(F,3),..., L(f k—1)}.
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Critical Values and Weighted Moments

Definition (Deligne, Manin, Shimura)

If f € Sk(To(N)) is a newform, then its critical L-values are

(L(F,1), L(f,2), L(F,3),..., L(f k—1)}.

Definition (O-Rolen-Sprung)

If m> 1, then we define the weighted moments

k—2
M¢(m) := T j ol JZ:; (k J— 2>/\(f7j +1) ™
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The zeta-polynomials (k > 4 even)

Definition (O-Rolen-Sprung)

The zeta-polynomial for f is

k—2 k—2—h
Ze(s) =) (—=9)" Y (’" : h> -S(k —2,m+ h) - M¢(m),

h=0 m=0
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The zeta-polynomials (k > 4 even)

Definition (O-Rolen-Sprung)

The zeta-polynomial for f is

k—2 k—2—h
Ze(s) =) (—=9)" Y (’": h> -S(k —2,m+ h) - M¢(m),

h=0 m=0

where the (signed) Stirling numbers of the first kind are given by

()n=x(x = 1)(x = 2) -+ (x = n+1) = Y S(n,m)x™.
m=0
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The S(n, k) form Pascal-type triangles

We have the recurrence

S(n,k)=S(n—1,k—1)—(n—1)-S(n—1,k).

1
0 1
0 -1 1
0 2 -3 1
0 —6 11 —6 1
0 24 —50 35 —10 1

0 —120 274 —225 85 —15 1
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The S(n, k) form Pascal-type triangles

We have the recurrence

S(n,k)=S(n—1,k—1)—(n—1)-S(n—1,k).

1
0 1
0 -1 1
0 2 -3 1
0 —6 11 —6 1
0 24 —50 35 —10 1
0 —120 274 —225 85 —15 1

Remark
Z¢(s) is a cobbling of layers of these weighted by moments Mf(m).J
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Functional Equations and the Riemann Hypothesis
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If f € Sk(To(N)) is an even weight k > 4 newform, then we have:
@ For all s € C we have that Z¢(s) = e(f)Zs(1 — s).
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Functional Equations and the Riemann Hypothesis

Theorem 1 (O-Rolen-Sprung)

If f € Sk(To(N)) is an even weight k > 4 newform, then we have:
@ For all s € C we have that Z¢(s) = e(f)Zs(1 — s).
@ If Z¢(p) = 0, then Re(p) = 1/2.

Remark

To completely confirm Manin’s speculation we must show:
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Functional Equations and the Riemann Hypothesis

Theorem 1 (O-Rolen-Sprung)

If f € Sk(To(N)) is an even weight k > 4 newform, then we have:
@ For all s € C we have that Z¢(s) = e(f)Zs(1 — s).
@ If Z¢(p) = 0, then Re(p) = 1/2.

Remark
To completely confirm Manin’s speculation we must show:

@ The values Zg(—n) have a “nice” generating function.
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Functional Equations and the Riemann Hypothesis

Theorem 1 (O-Rolen-Sprung)

If f € Sk(To(N)) is an even weight k > 4 newform, then we have:
@ For all s € C we have that Z¢(s) = e(f)Zs(1 — s).
@ If Z¢(p) = 0, then Re(p) = 1/2.

Remark
To completely confirm Manin’s speculation we must show:

@ The values Zg(—n) have a “nice” generating function.

e The Z(—n) encode arithmetic-geometric information.
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Example of A € 515

Za(s) ~ (5.11 x 107 ")s'% 4- ... — 0.0199s + 0.00596.

05 3 1 15

Figure: The roots of Za(s)
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A Nice Generating Function

Theorem 2 (O-Rolen-Sprung)

Define the normalized period polynomial for f by

Re(z) ::sz(kj__z) Nf k—1—)- 2.

j=0
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A Nice Generating Function

Theorem 2 (O-Rolen-Sprung)

Define the normalized period polynomial for f by

Re(2) ::Z(kJ 2) NFf k—1—j)-2.

j=0

Then we have that

Re(z)
1—2z)k1 sz
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A Nice Generating Function

Theorem 2 (O-Rolen-Sprung)

Define the normalized period polynomial for f by

Re(z) ::ki(kf) Nf k—1—)- 2.

j=0

Then we have that

Re(z)
1—2z)k1 sz

Remark (Euler)

1_e —l—i-ft—tZC




Zeta-polynomials for modular form periods
Introduction and Statement of Results

Arithmetic Geometric Information

Conjecture (Bloch-Kato). Let 0 < j < k— 2, and assume L(f,j + 1) # 0. Then we have

Lfi+1) - Tam(j+ D#IG +1)
(2mi)i+ 1 T T G (5 D#HY(k— 1 - 5)

=C(j+1)
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Arithmetic Geometric Information

Conjecture (Bloch-Kato). Let 0 < j < k— 2, and assume L(f,j + 1) # 0. Then we have

Lfi+1) - Tam(j+ D#IG +1)
(2mi)i+ 1 T T G (5 D#HY(k— 1 - 5)

=C(j+1)

Corollary (O-Rolen-Sprung)

Assuming the Bloch-Kato Conjecture, we have that

Z CG+1)

<j<k—2
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Combinatorial Polynomials H;-(s)

Definition (Binomial Coefficient)

If x,y € C, then the complex binomial coefficient (;) is

<x> _ M(x+ 1)
y) T+ D)Mx—y+1)
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Combinatorial Polynomials H;-(s)

Definition (Binomial Coefficient)

If x,y € C, then the complex binomial coefficient (;) is

<x> _ M(x+ 1)
y) T+ D)Mx—y+1)

Definition (Special Polynomials)
If kK > 4 is even, then

H+():(5 k22>+<ki2>7

+
k
= 3(5 J+k 3>
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Theorem 3 (O-Rolen-Sprung)
Suppose that k > 4 and e € {£1}. Then we have that

. = _ ~6 o
plim  Ze(s) = Hi(=s),
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The H;(—s) Approximate Z(s)

Theorem 3 (O-Rolen-Sprung)
Suppose that k > 4 and e € {£1}. Then we have that

. = _ ~6 .
plim  Ze(s) = Hi(=s),

where f € Si(Fo(N)) are chosen with e(f) = e.
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The HE(—s) Approximate Z¢(s
k

Theorem 3 (O-Rolen-Sprung)
Suppose that k > 4 and e € {£1}. Then we have that

. = _ ~6 o
plim  Ze(s) = Hi(=s),

where f € Si(Fo(N)) are chosen with e(f) = e.

Remark

This offers an unexpected connection to polytopes.
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Ehrhart Polynomials

Definition
Given a d-dimensional integral lattice polytope in R”, the Ehrhart
polynomial £,(x) is determined by

Lo(m)=#{peZ":pec mP}.
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Ehrhart Polynomials

Definition
Given a d-dimensional integral lattice polytope in R”, the Ehrhart
polynomial £,(x) is determined by

Lo(m)=#{peZ":pec mP}.

Example

The polynomials H, (s) are the Ehrhart polynomials of the simplex

k=3
conv 61,62,...,61(_3,*5 €j
Jj=1
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Limits of £ € Sg(lo(N)) with e(f) = —1

Figure: The tetrahedron whose Ehrhart polynomial is Hg (s).
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Limits of £ € Sg(lo(N)) with e(f) = —1

Figure: The tetrahedron whose Ehrhart polynomial is Hg (s).

lim  Z¢(s)
N—+o00

= H; (-s) = <s—;> (s—;jt;ll) (s—i—f).
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Theorem 1 (O-Rolen-Sprung)

If f € Sk(To(N)) is an even weight k > 4 newform, then we have:
@ For all s € C we have that Z¢(s) = e(f)Z¢(1 — s).
@ If Z¢(p) = 0, then Re(p) = 1/2.
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Theorem 1 (O-Rolen-Sprung)

If f € Sk(To(N)) is an even weight k > 4 newform, then we have:
@ For all s € C we have that Z¢(s) = e(f)Z¢(1 — s).
@ If Z¢(p) = 0, then Re(p) = 1/2.

Theorem 2 (O-Rolen-Sprung)
Define the period polynomial for f by

Re(z) ::kz_:z(k_.z)-/\(f,klj)-zj.

=0\ J
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Theorem 1 (O-Rolen-Sprung)

If f € Sk(To(N)) is an even weight k > 4 newform, then we have:
@ For all s € C we have that Z¢(s) = e(f)Z¢(1 — s).
@ If Z¢(p) = 0, then Re(p) = 1/2.

Theorem 2 (O-Rolen-Sprung)
Define the period polynomial for f by

k—2 k—?2 . )
Rf(z)._;( ; )-/\(f,klj)-zf.

Then we have that

Re(z >
(1_f§)l)<—1 = ZZ{»’(*”)ZH.
n=0
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Theorem (Rodriguez-Villegas (2002))

Suppose that U(z) € R[z] is a degree e polynomial with U(1) # 0.
Then there is a polynomial H(z) for which

U(z > n
(1_(2))e+1 = ZH(”)Z o
n=0
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Theorem (Rodriguez-Villegas (2002))

Suppose that U(z) € R[z] is a degree e polynomial with U(1) # 0.
Then there is a polynomial H(z) for which

U(z > n
(1_(2))e+1 = ZH(”)Z o
n=0

If all roots of U(z) are on |z| =1, then we have:




Zeta-polynomials for modular form periods
Proof of Theorems 1 and 2

Theorem (Rodriguez-Villegas (2002))

Suppose that U(z) € R[z] is a degree e polynomial with U(1) # 0.
Then there is a polynomial H(z) for which

U(z > n
(1_(2))e+1 = ZH(”)Z o
n=0

If all roots of U(z) are on |z| =1, then we have:
@ All roots of Z(s) := H(—s) lie on Re(s) =1/2.
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Theorem (Rodriguez-Villegas (2002))

Suppose that U(z) € R[z] is a degree e polynomial with U(1) # 0.
Then there is a polynomial H(z) for which

U(z > n
(1_(2))e+1 = ZH(”)Z o
n=0

If all roots of U(z) are on |z| =1, then we have:
@ All roots of Z(s) := H(—s) lie on Re(s) =1/2.

@ We have that

Z(1—s)==xZ(s).
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Proof of Theorems 1 and 2

Sketch of the proof of Theorems 1 and 2.

@ For even weight k > 4 newforms f we must prove that

Re(p) =0 =

lp| = 1.
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Proof of Theorems 1 and 2

Sketch of the proof of Theorems 1 and 2.
@ For even weight k > 4 newforms f we must prove that

Re(p) =0 = |pl=1.

@ Make the definition of Z¢(s) := H(—s) explicit (i.e. Stirling
numbers and weight moments).
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Generating Function for Critical Values

Definition
If f € Sk(To(N)) is a newform, then its period polynomial is
k—2 ,
2miX)™
(X) = ST Lk — 1= my. 2TX)T

m!
0

3
I
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Generating Function for Critical Values

Definition
If f € Sk(To(N)) is a newform, then its period polynomial is
k—2 \m
(X) = ST Lk — 1= my. 2TX)T

m!
0

3
I

Natural Problems
@ Determine the r¢(X).
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Generating Function for Critical Values

Definition
If f € Sk(To(N)) is a newform, then its period polynomial is
k—2

re(X) = L(f,k—1—m)
0

(2mixX)m
om

3
I

Natural Problems
@ Determine the r¢(X).

@ Study the “distribution” of the zeros of r¢(X).
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Let f(7) = g—4q3—2q° +--- € S4(0(8)) be the unique newform.
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Let f(7) = q—49>—2¢°+- - € S4([o(8)) be the unique newform.
@ We find numerically that
L(f,1) ~ 0.354500683730965,

L(f,2) ~ 0.690031163123398,
L(f,3) ~ 0.874695377085079.
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Example. fe 54(F0(8))

Let f(7) = g—4q>—2¢°+--- € S4(To(8)) be the unique newform.
@ We find numerically that

L(f,1) ~ 0.354500683730965,
L(f,2) ~ 0.690031163123398,
L(f,3) ~ 0.874695377085079.

@ This means that

re(X) ~ —6.9975X? + 4.33559iX + 0.87469.
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Example. fe 54(F0(8))

Let f(7) = g—4q>—2¢°+--- € S4(To(8)) be the unique newform.
@ We find numerically that

L(f,1) ~ 0.354500683730965,
L(f,2) ~ 0.690031163123398,
L(f,3) ~ 0.874695377085079.

@ This means that

re(X) ~ —6.9975X? + 4.33559iX + 0.87469.

@ lts roots are £0.170376720591406 + 0.309793113352311/,
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Example. fe 54(F0(8))

Let f(7) = g—4q>—2¢°+--- € S4(To(8)) be the unique newform.
@ We find numerically that

L(f,1) ~ 0.354500683730965,
L(f,2) ~ 0.690031163123398,
L(f,3) ~ 0.874695377085079.

@ This means that

re(X) ~ —6.9975X? + 4.33559iX + 0.87469.

© lts roots are £0.170376720591406 + 0.309793113352311/,
which have norm? approximately 0.125000000 ~ %.
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Suppose that f € S, (Io(N)) is a newform with k > 4.




Zeta-polynomials for modular form periods
Proof of Theorems 1 and 2

“Riemann Hypothesis”" for Period Polynomials

Conjecture (RHPP)

Suppose that f € S, (Io(N)) is a newform with k > 4.
If re(z) =0, then |z| =

=
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“Riemann Hypothesis”" for Period Polynomials

Conjecture (RHPP)

Suppose that f € S, (Io(N)) is a newform with k > 4.
If re(z) =0, then |z| =

=

Remark

The circle |z| = ﬁ is the “symmetry” for a functional equation.
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@ In 2013 Conrey, Farmer, and Immamoglu proved that zeros of
the “odd part” of r¢(X) have |z]| =1 when N = 1.
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Previous Work

@ In 2013 Conrey, Farmer, and Immamoglu proved that zeros of
the “odd part” of r¢(X) have |z]| =1 when N = 1.

@ El-Guindy and Raji proved the N =1 case.
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Our results on RHPP

Theorem 4 (Jin-Ma-O-Soundararajan)

The Riemann Hypothesis for period polynomials is true.

Corollary (Jin-Ma-O-Soundararajan)

If f € Si(To(N)) is an even weight k > 4 newform, then all of the
zeros p of Re(z) satisfy |p| = 1.
In particular, Theorems 1 and 2 are true.




Zeta-polynomials for modular form periods
Proof of Theorems 1 and 2

Equidistribution

Theorem 5 (Jin-Ma-O-Soundararajan)

For fixed To(N), as k — 400, the zeros of rs(X) = 0 become
equidistributed on the circle with radius \/LN




Zeta-polynomials for modular form periods
Proof of Theorems 1 and 2

Equidistribution

Theorem 5 (Jin-Ma-O-Soundararajan)

For fixed To(N), as k — +o0, the zeros of rf(X) = 0 become
equidistributed on the circle with radius ﬁ

Question

Can one do better than equidistribution?
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1 1
Xy = —— exp (i6i+ O ,
SV TR (' ! <2km>)

where for 0 < ¢ < k — 3 we let 6, € [0,27) be the solution to:

2 VN

= 2 L 4 if e(f) =1
k=2 g Zgnoy =2t D=1
lm if e(f) = —1.
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Theorem 6 (Jin-Ma-O-Soundararajan)
If either N or k is large enough, then the roots of r¢(X) are:

1 1
Xy = —— exp (i6i+ O ,
SV TR (' ! <2km>>

where for 0 < ¢ < k — 3 we let 6, € [0,27) be the solution to:

k—2 o T4 fr i e(F) =1,
('913)2{2 "

—— -0y — —=sin
2 T YN on if () = —1.

Remarks (Fix k)

@ The angles of the roots of r¢(X) converge as N — +oo.
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Theorem 6 (Jin-Ma-O-Soundararajan)
If either N or k is large enough, then the roots of r¢(X) are:

1 1
Xy = —— exp (i6i+ O ,
SV TR (' ! <2km>>

where for 0 < ¢ < k — 3 we let 6, € [0,27) be the solution to:

k—2 2T . >+ Lm ife(f)=1
0,) = { 2 ’
> v o) {

T fg, - =
lm if e(f) = —1.

Remarks (Fix k)

@ The angles of the roots of r¢(X) converge as N — +oo.

@ This proves Theorem 3 that for fixed e(f) € {£} we have

NE)TOO Zi(s) = HE(—s).




Zeta-polynomials for modular form periods
Easy Case of Theorem 4

Proof of RHPP when

@ We care about the zeros of

—2L(f,1)®X? + 2mil (f,2)X + L(f,3) = 0.



Zeta-polynomials for modular form periods
Easy Case of Theorem 4

Proof of RHPP when

@ We care about the zeros of

—2L(f,1)®X? + 2mil (f,2)X + L(f,3) = 0.

@ By the FE we have

272

L(f.3) = - - €(f) - L(F.1).
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Proof of RHPP when

@ We care about the zeros of

—2L(f,1)®X? + 2mil (f,2)X + L(f,3) = 0.

@ By the FE we have
27'('
L(f,3) = — - e(f) - L(f,1).

@ And so we care about the zeros of

) L(F2) )

TL(f,1) N

o Trivial if L(f,2) = 0.
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Proof of RHPP when

If L(f,2) # 0, then we apply the quadratic formula.
@ We need to show %L(f,3)2 > L(f,2)2.

Then we use Hadamard factorization of A(f,s)

A(f,s) = B[] (1 - ;) exp(s/p).

p

Now we always have 3/2 < Re(p) < 5/2.

This means that A(f,3) > A(f,2). O



GENERAL STRATEGY FOR
PROVING RHPP
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Analytic Definition of r¢(X)

Lemma
If f € Sk(To(N)) is a newform, then

i k—1 ioo
re(X) = —((21(_)2)! /O F(r)(r — X)*2dr.
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PSL,(R)™ action

Definition
If ¢(z) € C[z] with deg(¢) < k —2 and (25) € PSLy(R)™, then

8l (25) (2):—(ad — be)I% - (cz + d)F2 - 6 (j j) .
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PSL,(R)™ action

Definition
If ¢(z) € C[z] with deg(¢) < k —2 and (25) € PSLy(R)™, then

¢l (25) (2):=(ad — bc)*~2 - (cz+ d)*2 . ¢ (Zig) :

Remark
This defines a “modular action” on

Viea = {¢ € Clz] : deg(9) < k—2}.
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If f is a newform, then ps(X) := re(X /i) € R[X] satisfies:

pr(X) = £i* (\FNX) 2 pf <I\/1X> .

Proof.
o If Wy = (,(\)I 51), then Atkin-Lehner implies

f|Wy = £f.
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Lemma
If f is a newform, then ps(X) := re(X /i) € R[X] satisfies:

pr(X) = £i* (\FNX) 2 pf <I\/1X> .

Proof.
o If Wy = (,(\)I 51), then Atkin-Lehner implies

f|Wy = £f.

o Since W2 =/ in PSLy(R)™,
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Functional Equation for r¢(X)

Lemma
If f is a newform, then ps(X) := re(X /i) € R[X] satisfies:

pr(X) = £i* (\FNX) 2 pf <I\/1X> .

Proof.
o If Wy = (,(\)I 51), then Atkin-Lehner implies

f|Wy = £f.

o Since W2 =/ in PSLy(R)*, we get

rf|(1 £l WN) =0.
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General Strategy

Q Let m:= —"52, and define
1/2m k = 2m k ;
= — — . f A ] XJ‘
Pr(X) 2<m)/\(f,2>+j§_l <m+J)A(’2+J>

@ Theorem 4 follows if the unit circle has all of the zeros of

Tf(X) = Pf(X) + 6(f)Pf(1/X).
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General Strategy

Q Let m:= % and define
1/2m k = 2m k :
Pe(X) = = Al F, = AN F, = X/
=3 ()a(rz) + 2 () A (5 +9)
@ Theorem 4 follows if the unit circle has all of the zeros of

Tf(X) = Pf(X) + 6(f)Pf(1/X).

© Letting X — z =€ on |z| = 1, then T¢(z2) is a
“trigonometric” polynomial in sin or cos depending €(f).
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Classical Theorem of Pdlya and Szego

Theorem (Szego, 1936)
Suppose that u(6) and v(6) are

u(f) := ap + a1 cos(f) + az cos(20) + - - - + a, cos(nb),
v(0) := a1 sin(f) + a2sin(20) + - - - + ap sin(nd).
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Classical Theorem of Pdlya and Szego

Theorem (Szego, 1936)
Suppose that u(6) and v(6) are

u(f) := ap + a1 cos(f) + az cos(20) + - - - + a, cos(nb),
v(0) := a1 sin(f) + a2sin(20) + - - - + ap sin(nd).

If0<ag<a; <ay --<ap_1<ap then both u and v have
exactly n zeros in [0,7), and these zeros are simple.
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Useful inequalities

Lemma 1
The completed L-function \(f,s) satisfies the following:

1) It is monotone increasing in the range s > % + %

2) In particular, we have

k k k
<SA(F2)<A(Fa+1) <A(f,5+2)<....
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Useful inequalities

Lemma 1
The completed L-function \(f,s) satisfies the following:
1) It is monotone increasing in the range s > % + %

2) In particular, we have

k k k
<A(F2)<A(FS+1) <A(f, 542

3) If e(f) = —1, then A (f, %) = 0 and

k 1. (, k 1. (, k
Afz+1)<zA(fs+2) <ZA(f = <.

IN
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Method of Proof.

@ Use the Hadamard Factorization of A(f,s)

A(f,s) = BT <1 - ;) exp(s/p).

p

o All the zeros lie in [Re(s) — g‘ < 1.

.0

N[

o Therefore |1 — s/p| is increasing for s > 5 +
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More useful inequalities

Lemma 2
If0 < a< b, then

(f. 552 +a) _¢(1+a)
L(f, 552 +b) ~ ¢(1+b)>

Sketch.
e Follows from comparing log derivatives L(f,s) and ((s).

@ Which give rise to exponential integral formulas for

L(f, 5L 4 a) ¢(1 + a)?
L(f, 511 b) and e

@ Deligne's Bound for Fourier coefficients of f.
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@ Insert Lemmas 1 and 2 into the Szegd’s Theorem.
@ This proves most of RHPP (infinitely many case remain).

@ Design a different argument for large weights and small
levels (leaving finitely cases).
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Sketch of the proof of Theorem 4 (i.e. RHPP).

Insert Lemmas 1 and 2 into the Szego's Theorem.

This proves most of RHPP (infinitely many case remain).

Design a different argument for large weights and small
levels (leaving finitely cases).

Computer calculations with sage covers the remaining forms.
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Executive Summary

Our results

Theorem (O-Rolen-Sprung)

Manin’s Conjecture is true.
@ Each zeta-polynomial Z¢(s) has a FE and obeys RH.
@ The Zs(—n) encode the “Bloch-Kato complex.”
© The generating function for Z¢(—n) is nice.

© For fixed k and €(f) = €, we have

lim  Ze(s) = HS(—s).
pim £(s) = Hi(—s)
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Theorem 4 (Jin-Ma-O-Soundararajan) I

The Riemann Hypothesis for period polynomials is true.

Theorem 5 (Jin-Ma-O-Soundararajan)

For fixed To(N), as k — 400, the zeros of r¢(X) = 0 become
equidistributed on the circle with radius —-

W .
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