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1. Introduction

1-1. One-dimensional formal groups

R: a commutative ring with identity element 1.

Definition 1. A commutative formal group (law) F' of dimension one
over R is a formal power series F'(x,y) € R|[z,y]] satisfying

F(z,0) = F(0,2) =z,
F(z,F(y,2)) = F(F(z,y),2),
F(z,y) = F(y, ).

(x) If R has no nilpotent elements, F(x,y) = F(y,x) is always true
[Lazard-Serre].



Definition 2. The multiplication-by-n map [n]p is defined inductively
by setting [1]|p(x) = x and

Example 1. (1) For the additive formal group law F(z,y) =

Ga(:c,y) =T+,

(2) For the multiplicative formal group law F(x,y) = G (z,y) =
T +Yy— 2y,

n|p(z)=1—(1—2x)".



1-2. Formal groups of elliptic curves

Let F be an elliptic curve in P% over a field k:
Y2Z + a1 XYZ+a3YZ? = X3P+ aoX?Z + ay X 7% + agZ°.

The group law pu : FE(k) x E(k) — E(k) induces the ring
homomorphism
1w 00— Oo ® Op

on the local ring at infinity O. This extends to the completion and
gives rise to a formal group law of E:

L(ty,to) =ty +ta+ Y citith,
i.j>1



1-3. Formal groups in positive characteristic

Suppose that k is a field of characteristic p > 0. Then the
multiplication-by-p map [p|r becomes as follows:

o If [p|p(x) # 0, then
plr(z) = ca?’ + higher-degree terms, (c # 0).

The integer h (> 1) is called the height of F" and denoted by ht (F).
o If [p]rp(x) =0, then F is said to have infinite height.
Example 2. (1) ht (G,) = o0, as [plg,(x) = pzr = 0.

(2) ht (G,,) =1, as [plg,,(x) =1 — (1 — x)P = 2P(mod p).



Properties

Let F' and G be (one-dimensional) formal groups over
an algebraically closed field k.

e If ht (F') = oo, then F' is isomorphic to G, over k.

e If ht (F') < 0o and ht (G) < oo, then F and G are isomorphic over
k if and only if ht (F') = ht (G).

—> The height classifies the isomorphism classes of formal groups
over an algebraically closed field .



1-4. Formal groups of Calabi-Yau varieties

k: an algebraically closed field of characteristic p > 0

Definition 3. X is a Calabi-Yau variety over k of dimension n if

Y

it is a projective variety over k of dim = n with wxy = Ox and
hY" = dim H*(X,0) =0 for 0 < i < n.

We consider infinitesimal deformation of X.

Definition 4. For a finite local k-algebra A with residue field k, the
functor

bOx (A) =ker(H(Xa,G,) — HL(X,G,))

is called the Artin-Mazur functor of X, where X4 = X X Spec 4
and G,,, is the sheaf of multiplicative groups.



The formal group of an elliptic curve can be generalized to
Calabi-Yau varieties.

Theorem (M. Artin and Mazur) If X is Calabi-Yau, @x is
representable by a commutative formal group of dimension P, = 1,
called the formal group of X.

Functor @ x
1
Dieudonné module — Crystalline cohomology
H3(X,W(0)) (Iusie) H? . (X/W)® K
(slopes)
/l\

“/Zeta-function”

Height of @ x can be computed from slopes of the Newton polygon
of the zeta-function of X (Artin-Mazur).



1-5. Questions

e |s height h bounded?
e Does h take every value within its range?

e Find a concrete model of X for each h.



2. Formal groups of K3 surfaces

2-1. Result of M. Artin and Mazur

For K3 surfaces, @ is also called the formal Brauer group of X.

Theorem (M. Artin and Mazur). For K3 surfaces X,
h:=ht(®)=1,2,---,10 or o0.

If A is finite, then p(X) < 22 —2h, where p(X) =rank NS(X) (=
rank Pic(X) for K3 surfaces) is the Picard number of X.

[M. Artin] X is called supersingular if h = oo (i.e. & =2 Gy,).

[Shioda] X is called supersingular if p(X) = 22

10



Theorem (M. Artin, Shioda; Maulik, Charles et. al.) (1) p(X) = 22
and h = oo are equivalent.

(2) If p(X) = 22, then disc NS(X) = —p??0 with 1 < g < 10, and
oo Is caled the Artin invariant of X.

h and oq give a stratification on the moduli space M of polarized
K3 surfaces over k. Let

(h>i}:={X|htd >}
oo < i} = {X | p(X) =22 and oy < j}.

dim 19 dim 9
M  ={h>1}D---D{h>10} D{h>11} ={h =0}

:{O-OS10}D{UO§9}D"'D{0_0:1}
dim 0

11



2-2. Concrete models

Theorem (Yui [1999]) Using weighted diagonal or quasi-diagonal
K3 surfaces, Yui gave concrete examples of K3 surfaces for h =
1,2,3,4,6 or 10 (in some characteristic).

Theorem (G. [2002]) Using weighted K3 surfaces of Delsarte type,
we find concrete examples of K3 surfaces for h = 5,8 or 9 (in some
characteristic).

Note: Examples of h = 7 are still open.

12



Example 3.

S abry + alro 4+ a5 +2irg =0 CP3(1,1,3,4)

with p # 2,3. Then

’

800plkl\Db—k

ifp=1 (mod 32)

if p=+15 (mod 32)
ifp==+7 £9 (mod 32)
if p= 43, &5, +11, +13
otherwise. (mod 32)

13



3. Formal groups of Calabi-Yau threefolds
3-1. Height of formal groups

X: Calabi-Yau threefold over an algebraically closed field k£ of
characteristic p > 0 with h := ht (®x).

Theorem (van der Geer and Katsura) If h # oo, then h < h12 +1.

e |Is h bounded?

e Is Hodge number h'? = dim H?(X, Qx) bounded?

—> We will see what values we find for A.

14



3-2. Weighted threefolds of Delsarte type
o P4(Q): Weighted projective 4-space of weight ), where ) =
(w07w17w27w37w4) and deg Ly — Wy.

There are 7555 weighted projective 4-spaces containing quasi-
smooth Calabi-Yau hypersurfaces.

e X, : weighted projecive 3-fold of Delsarte type with matrix
A = (ay;)

4
XA . E xgioxcllilxgﬂxgii%wz#l — O
1=0

4 . .
of degree m := ) ,_,wja;; in 5 monomials.

15



Properties

Let d =| det A | (assume p 1 d).

o If X, is quasi-smooth, then X, has only cyclic quotient
singularities.

e X 4 is birational to a finite quotient of Fermat 3-fold F}; defined by
g+t yl =0 C P*

Fq
L

Xa <+— X (crepant resolution)

16



Cohomology group

There exists a finite group action I'4 such that X 4 is birational
to Fy/T" 4, where I' 4 acts on F; coordinatewise and

H*(Fy/T4) = ©acaV(a)
where dim V(a) = 1 and A is an index set of vectors:
A={a=(ag, - ,04) EZJAL X -+ X L/dZ | --- }.

One can compute the slopes of the zeta-function of F,;/T"4 from
vectors a = (g, -+, ay).

17



Then there is a unique vector v = (v, - -+ , aq) such that
o (g, ,a4)A=(0,---,0) (mod d)
.a0+...+a4:d_

Put
d

B ged(ag, - -+, y)

ex .

— ex Is the smallest modulus that describes the main part of

H3(X). Roughly, ex is the smallest degree of Fermat threefolds that
birationally cover X 4.

18



e For each a = (ag, - ,ay), define an integer

where < «;/d > denotes the fractional part of «;/d.

(It takes four values ||a|| =0,1,2 or 3. )

e Let f be the order of p modulo m. Put
H={p'(modm) | 0<i< f}

and define

Au(a) =) |tall

19



3-3. Calculations of height (Fermat type)

As a special case of X4, consider a Calabi-Yau threefold of
weighted Fermat type of degree m:

Xa: o)+ 2 + a0+ 23 + o =0 C PYQ)

There are 147 weights giving such threefolds.

Theorem Let X be a crepant resolution of X4 as above. Then
ex = m. Let f be the order of p modulo m. Then

(1) h :=ht®x < oo if and only if ||[p'ay| =1 foralli (0 << f).

(2) If his finite, then h = f.

20



Proof. (1) Write K for the quotient field of the ring W (k) of Witt
vectors over k. Then
htd; <oco < dimK(Hgms(jZ) X K[O,l[) > 1
= e cUAn(a) < f} 21
& Ap(ay) < f
& [plax|=1foralli (0<i< f)

(2) N
h = dlmK(Hg)ms(X) ® K[O,l[)
= #lacUAy(a) < f}
= the length of the H-orbit of ay

— f

21



Proposition If X is a Calabi-Yau threefold of weighted Fermat type,
then following are the values for ht @ x:

1 2 3 4 5 6 7 8 9 10
11 12 14 16 18 20

21 22

42

22



If X is a weighted hypersurface of Delsarte type in P*(Q) with a
finite group action G such that (X Y) IS @ mirror pair.

~

X +— X
v _
Y i=X/G + Y
Then by [van der Geer and Katsura],

ht(X) <h>'(X)+1 and ht(Y)<Ah*(Y)+1=n""(X)+1
and by [Stienstra], ht (X) = ht (V). Hence

ht (X) < min{h>'(X), A"} (X))} + 1.
To obtain a big h, better to have A% (X) &~ h1(X).

23



Example 4.

X

1806 43 7 3 2

C P*(1, 42,258,602, 903)

of degree 1806 (p { 1806). Then ex = 1806, ht! = h*! = 251 and

y

\

1 ifp=1 (mod 1806)

2 ifp=285,--- (mod 1806)
21 ifp=169,--- (mod 1806)
42 if p=421,--- (mod 1806)

oo otherwise

Remark. Compared with K3 surfaces, less frequent to get finite h.

24



3-4. Calculations of height (quasi-diagonal type)

As another special case of X 4, consider a Calabi-Yau threefold of
weighted quasi-diagonal type of degree m:

Xa: z00z + 2 + 252 + 23 + 2y =0 C PYQ).

There are 137 weights giving such threefolds.

Remark. We also computed with the following quasi-diagonal
threefolds, but could not find new values for h:

R R e A S e e R i |
2o 4 oo+ +as P+ ayt =0
o+ 1yt Fayttxgd + xsxyt =0

25



Theorem. Let X be a crepant resolution of X4 of degree m as
above. Set

M = lcm (mg, mo, m3, my),

Mz‘ = M/mz (’L = 0,2,3,4) and M1 = M—M()—M2 —Mg—M4.
Let f be the order of p modulo M. Then

(1) Ex — M and &y = (Mo,Ml,MQ,M37M4).
(2) h:= htPx < oo if and only if ||[play]| =1 foralli (0 < i< f).

(3) If h is finite, then h = f.

26



Proposition Following are the values for the height of Calabi-Yau
threefolds of weighted quasi-diagonal type for some characteristic:

1 2 3 4 5 6 7 8 9 10

11 12 14 15 16 18 20
21 22 23 24 27 28

30

41 42 46

82

Remark: Examples of h = 46 or h = 82 are not self-mirror.

27



Example 5.

83

X: 2¥8e +aP i+ +23 =0 CPY1,1,12,28,42)

of degree 84 (p184). Then ex = 3486, h''! =11, h*! = 491 and

e

\

1 ifp=1 (mod 3486)
2 if p=1163,3319 (mod 3486)

41  if p =127,169,253,--- (mod 3486)
82 if p=43,85,211,--- (mod 3486)
oo otherwise
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