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Introduction

I Functional connectivity (FC): statistical correlations of brain
activities.

I Increasing evidence of altered brain FC networks associated
with neurological diseases like AD.

I Given rs-fMRI data: BOLD time series at N brain ROIs for n
subjects;
=⇒ a connectivity measure for each pair of the ROIs for each
subject, i.e. Pearson’s correlation or partial correlation, then
Fisher transformed
=⇒ Xi = (Xi1,Xi2, ...,Xik)′, k = N(N − 1)/2.

I Each subject i is in one of two groups: Yi = 0 or 1; possible
covariates Zi .

I Q: any association between Yi and Xi (after ajusting for Zi )?
a high-dim two-sample problem: n in 10s-100s; k in 1000s.



Introduction

I Standard approaches:
1. Mass-univariate: t-tets on (Yi ,Xij)’s for each j ; low
powered for multiple weak signals;
2. Derive some network summary statistics, e.g. clustering
coefficient, then t-test; not easy, over-simplified?

I Ours: a global test; why?
can rank the changes.



Methods: SPU tests

I Logistic regression model:

Logit [Pr(Yi = 1)] = β0 +
k∑

j=1

Xij · βj +
l∑

m=1

Zimδm. (1)

I H0: β = (β1, ..., βk)′ = 0.

I Score vector: U =
∑n

i=1(Yi − Ŷ 0
i )Xi

Ŷ 0
i : fitted value from the null model (under H0);

U ∝ β̂; U ∝ X̄ (1) − X̄ (2) if no Zi ’s.
Usual asymptotics: U ∼ N(0,V ); not used for large k.

I SPU tests: for a γ > 0,

SPU(γ) =
k∑

j=1

Uγ
j ∝ ||U||γ ,

SPU(∞) = ||U||∞ = max
j
|Uj |.



Methods: SPU tests

I

SPU(γ) =
k∑

j=1

Uγ
j =

∑
j

Uγ−1
j · Uj ,

I Remarks:
1) Challenge: many Uj ’s non-informative (i.e.aedge j not
changed); noise accumulation!
2) Var selection: too difficult with weak signals;
3) Weighting: weighted score with wj = Uγ−1

j ;
4) Use an odd vs even integer for γ ...



Methods: aSPU test

I SPU tests: SPU(γ) =
∑k

j=1 Uγ
j , SPU(∞) = maxj |Uj |.

I GEE-SPU(1) = Sum/burden test;
under assumtipn β1 = ... = βk ; huge dim reduction.

I SPU(2) = distance-based reg/nonprametric MANOVA =
KMR (or SKAT) if ...;
McArdle & Anderson (2001, Ecology); Wessel & Schork
(2006, AJHG); Liu, Lin & Ghosh (2007, Biometrics), Lee et
al, Wu et al (AJHG); Pan (2011, Genet Epi).

I SPU(∞) ≈ mass-univariate t-test;

I Optimal γ unknow, data-dependent.

I aSPU:
TaSPU = min

γ∈Γ
PSPU(γ).

Γ = {1, 2, 3, ..., 8,∞}; use permutations (or simulations) to
calculate the p-value.



Methods: Extensions

I Connectivity Xi : use (regularized) cov or precision matrix?
how much regularization?
Use Glasso: Ω = R−1(λ) or R(λ);
Use the density c (i.e. prop of non-zeros), instead of λ in
R−1(λ).

I Use Xi (c ,Ω), define U(c ,Ω)) and SPU(γ, c ,Ω),

TaSPU(γ,Ω) = min
c∈C

PSPU(γ,c,Ω).

TdaSPU(Ω) = min
γ∈Γ

PaSPU(γ,Ω).

TtaSPU = min
Ω∈{bΘ,bΣ}PdaSPU(Ω).

I Permuting residuals to calculate p-values.

I NBS(t): the size of the largest subnetwork with significant
edges (their t-stat > t);
similarly define aNBS, daNBS, taNBS.



Example: ADNI-2 data

I 30 AD patients, 38 cognitively normal (CN) controls;

I 116 AAL ROIs; N = 116

I Covariates: age (p = 0.09), gender (NS), education in years
(NS).

I k = 116× (116− 1)/2 = 6670 edges;

I taSPU: p = 0.02; taNBS: p = 0.06.



Figure: P-values for the ADNI data.



Figure: Altered brain connectivity for AD.



Figure: Simulation: power with sparse precision matrices.



Figure: Simulation: power with sparse precision matrices.



Figure: Simulation: power with sparse precision matrices and CV-selected
tuning parameters.



Figure: Simulation: power with sparse cov matrices.



Discussion

I Being adaptive is good!

I Easy to use: rigorous control of type I errors.
In practice, noisy data, small n, ....

I Connection with testing on high-dim cov matrices:
Li & Chen (2012, AoS): ≈ SPU(2);
Cai et al (2013, JASA): ≈ SPU(∞);
but theirs: no regularization, no S vs S−1.

I When using the sample cov or Glasso, ignored temporal
correlations; OK?
A working independence model!
Theory (Shu & Nan 2014; Zhou 2014, AoS).

I Current work: neuroimaging genetics ...

I Others: theory, other applications (ordinal or multivariate
Y )...
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