

DO GROWING WHITTAKER FUNCTIONS *ACTUALLY* OCCUR IN AUTOMORPHIC FORMS?

Stephen D. Miller Rutgers University

Joint work with Tien Trinh, University of Colorado, Boulder

WHITTAKER FUNCTIONS IN MODULAR FORMS

Let F be a classical holomorphic modular form for $SL(2,\mathbb{Z})$

$$F\left(\frac{az+b}{cz+d}\right) = (cz+d)^k F(z)$$

Then since F(z+1) = F(z), it has a Fourier expansion in Re(z):

$$F(x+iy) = \sum_{n \in \mathbb{Z}} a_n(y) e^{2\pi i nx}$$

Since F is holomorphic, actually $a_n(y) = e^{-2\pi ny}$.

A similar argument for non-holomorphic Maass forms (using Laplacian Δ instead of Cauchy-Riemann operator $\overline{\partial}$) reduces $a_n(y)$ to the solution of a 2nd order linear ODE.

WHICH SOLUTION? Whittaker: there are 2, one grows & one rapidly decays.

$$I_{\nu}(x) = \sum_{n=0}^{\infty} \frac{(x/2)^{\nu+2n}}{n! \,\Gamma(n+\nu+1)} \qquad \qquad I_{\nu}(u) = \sqrt{\frac{1}{2\pi u}} e^{u} + O(u^{-3/2}e^{u}), \quad u \to \infty$$
$$K_{\nu}(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin(\pi\nu)}. \qquad \qquad K_{\nu}(u) = \sqrt{\frac{\pi}{2u}} e^{-u} + O(u^{-3/2}e^{-u}), \quad u \to \infty.$$

If growth condition: cannot grow, hence must rapidly decay.

GROWING WHITTAKER FUNCTIONS IN MODULAR FORMS

Growing functions <u>do</u> actually occur in some examples

• e.g., modular j-function $j(z) = e^{-2\pi i z} + 744 + 196884 e^{2\pi i z} + \cdots$

- reciprocals of Ramanujan's Δ cusp form.
- weak Maass forms
- Poincare series formed from I-Bessel functions
- Automorphic Greens functions

These have many applications for SL(2).

Also in rank-one settings, e.g., SO(n,1) (Borcherds, Harvey-Moore,...).

Some recent movitation:

- [Viazovska; Cohn-Kumar-M-Radchenko-Viazovska] use growing modular forms of negative weight to resolve the sphere packing problem in dimensions 8 and 24.
- Thus harmonic analysis absolutely requires growing Whittaker functions, even though the automorphic representation viewpoint discourages them.

A RICH, BEAUTIFUL WHITTAKER THEORY IN HIGHER RANK

Standing assumptions for rest of talk:

- Stick to $G=SL(3,\mathbb{R})$, $\Gamma=SL(3,\mathbb{Z})$, K=SO(3)
- Spectral parameter λ is in general position (removable).

Whittaker functions are eigenfunctions of all invariant differential operators, and transform by a character under unit upper triangular matrices:

$$W\left(\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} gk\right) = e^{2\pi i(x+y)} W(g)$$

Studied by Kostant, Casselman-Zuckerman.

The decaying Whittaker function $W_{\lambda}(g)$ was earlier constructed by Jacquet, is most common.

There are 6 linearly independent solutions, of which Jacquet's $W_{\lambda}(g)$ is the only non-growing linear combination.

Analog of I-Bessel

$$\begin{array}{rcl}
\mathcal{M}_{\lambda}(a_{y_{1},y_{2}}) &=& \frac{\pi}{\sin(\frac{\pi}{2}(\lambda_{1}-\lambda_{2}))\sin(\frac{\pi}{2}(\lambda_{2}-\lambda_{3}))\sin(\frac{\pi}{2}(\lambda_{3}-\lambda_{1}))} \\
&\times |y_{1}y_{2}| \sum_{m=0}^{\infty} \frac{(\pi|y_{1}|)^{m-\lambda_{3}/2}(\pi|y_{2}|)^{m+\lambda_{1}/2}}{m!\,\Gamma(m+\frac{\lambda_{1}-\lambda_{3}}{2}+1)} I_{m+(\lambda_{1}-\lambda_{2})/2}(2\pi|y_{1}|)I_{m+(\lambda_{2}-\lambda_{3})/2}(2\pi|y_{2}|)^{m+\lambda_{1}/2}
\end{array}$$

For generic λ , the 6-dimensional space is spanned by $\mathcal{M}_{w\lambda}(g)$ for w in the Weyl group For special λ some coincide, and must replaced by appropriate limits.

ASYMPTOTICS OF WHITTAKER FUNCTIONS

Asymptotics are given by a conjecture of Zuckerman (proven by To, Templier): there is a basis $\phi_{\lambda}^{(m)}(g)$ with asymptotics

$$\log(\phi_{\lambda}^{(m)}(a_{y_1,y_2})) \sim 2\pi \left(p_3^{(m)}(y_1,y_2) - p_1^{(m)}(y_1,y_2) \right)$$

where

$$p_{3}^{(1)}(y_{1}, y_{2}) - p_{1}^{(1)}(y_{1}, y_{2}) = (y_{1}^{2/3} + y_{2}^{2/3})^{3/2},$$

$$p_{3}^{(2)}(y_{1}, y_{2}) - p_{1}^{(2)}(y_{1}, y_{2}) = -(y_{1}^{2/3} + e^{-2\pi i/3}y_{2}^{2/3})^{3/2},$$

$$p_{3}^{(3)}(y_{1}, y_{2}) - p_{1}^{(3)}(y_{1}, y_{2}) = -(y_{1}^{2/3} + e^{2\pi i/3}y_{2}^{2/3})^{3/2},$$

$$p_{3}^{(4)}(y_{1}, y_{2}) - p_{1}^{(4)}(y_{1}, y_{2}) = (y_{1}^{2/3} + e^{-2\pi i/3}y_{2}^{2/3})^{3/2},$$

$$p_{3}^{(5)}(y_{1}, y_{2}) - p_{1}^{(5)}(y_{1}, y_{2}) = (y_{1}^{2/3} + e^{2\pi i/3}y_{2}^{2/3})^{3/2},$$

$$p_{3}^{(6)}(y_{1}, y_{2}) - p_{1}^{(6)}(y_{1}, y_{2}) = -(y_{1}^{2/3} + y_{2}^{2/3})^{3/2}.$$

$$(p_{1}^{(m)}(y_{1}, y_{2}) = y_{1}^{(m)}(y_{1}, y_{2}) = (y_{1}^{2/3} + e^{2\pi i/3}y_{2}^{2/3})^{3/2},$$

$$p_{3}^{(6)}(y_{1}, y_{2}) - p_{1}^{(6)}(y_{1}, y_{2}) = -(y_{1}^{2/3} + y_{2}^{2/3})^{3/2}.$$

$$(p_{1}^{(m)}(y_{1}, y_{2}) = y_{1}^{(m)}(y_{1}, y_{2}) = (y_{1}^{2/3} + e^{2\pi i/3}y_{2}^{2/3})^{3/2}.$$

$$(p_{1}^{(m)}(y_{1}, y_{2}) = y_{1}^{(m)}(y_{1}, y_{2}) = (y_{1}^{2/3} + e^{2\pi i/3}y_{2}^{2/3})^{3/2}.$$

$$(p_{1}^{(m)}(y_{1}, y_{2}) = y_{1}^{(m)}(y_{1}, y_{2}) = (y_{1}^{2/3} + e^{2\pi i/3}y_{2}^{2/3})^{3/2}.$$

$$(p_{1}^{(m)}(y_{1}, y_{2}) = y_{1}^{(m)}(y_{1}, y_{2}) = (y_{1}^{2/3} + y_{2}^{2/3})^{3/2}.$$

$$(p_{1}^{(m)}(y_{1}, y_{2}) = y_{1}^{(m)}(y_{1}, y_{2}) = (y_{1}^{2/3} + y_{2}^{2/3})^{3/2}.$$

$$(p_{1}^{(m)}(y_{1}, y_{2}) = y_{1}^{(m)}(y_{1}, y_{2}) = (y_{1}^{2/3} + y_{2}^{2/3})^{3/2}.$$

$$(p_{1}^{(m)}(y_{1}, y_{2}) = y_{1}^{(m)}(y_{1}, y_{2}) = (y_{1}^{2/3} + y_{2}^{2/3})^{3/2}.$$

This is a sharp form of Piatetski-Shapiro/Shalika "Multiplicity One Theorem"

Thus moderate growth implies only Jacquet's decaying one (m=6) appears in a Fourier expansion.

$$W_{\lambda}(g) = \sum_{w \in \Omega} \mathcal{M}_{w\lambda}(g) = \phi^{(6)}(g)$$

WHY HAS NOBODY SEEN THEM IN AUTOMORPHIC FORMS?

Evidence for existence	Evidence against existence
SL(2) ones are not obvious to construct	None have been constructed
Exist for many real rank 1 groups, e.g, SO(n,1)	Koecher/Goetzky principle for Sp(2n) and Hilbert modular forms
Existing ones are fundamental, e.g., Greens functions, counting problems	Miatello-Wallach conjecture they don't exist; proved some cases over number fields
String theory, Ward identities for CFT on 3- torus	Will later show SL(3, \mathbb{Z}) doesn't have any modulo some natural assumptions

- Some subtleties:
 - In principle, can have only Jacquet's Whittaker function W_{λ} in the Fourier expansion...yet still violate moderate growth (!). This is tricky.
 - Do not assume any growth conditions on the automorphic form, so in principle rapidly growing objects such as exp(j(z)) could occur.

SO WHAT SHOULD A COUNTEREXAMPLE TO THE MIATELLO-WALLACH CONJECTURE LOOK LIKE?

Naively, we might look to rule out having some M's in the Fourier expansion instead of just W's.

We'd expect F to grow like some exponential in the cusp, likej(z) does.

We'd expect to be able to manipulate Fourier series without convergence issues.

<u>Upshot of talk</u>: we rule out such an F under these assumptions, but have difficulty relaxing them completely.

[Miatello-Wallach] imposes no condition at all on the growth, so might have something like $e^{j(z)}$ which has an infinite number of M's in its expansion and doesn't have exponential growth.

FOURIER EXPANSIONS FOR $SL(3,\mathbb{Z}) \setminus SL(3,\mathbb{R}) / SO(3)$

Standard reference is Bump's Springer Lecture Notes

Let F be an automorphic function and define

$$[P^{m,n}F](g) := \int_{(\mathbb{Z}\setminus\mathbb{R})^2} F\left(\left(\begin{smallmatrix}1 & 0 & z\\ 0 & 1 & y\\ 0 & 0 & 1\end{smallmatrix}\right)g\right) e^{-2\pi i(mz+ny)} dy dz$$

Thus $F(g) = \sum_{m,n \in \mathbb{Z}} [P^{m,n}F](g)$

Key calculation (change variables in integral):

$$[P^{m,n}F]\left(\begin{pmatrix}a&b&0\\c&d&0\\0&0&1\end{pmatrix}g\right) = [P^{ma+nc,mb+nd}F](g), \quad \begin{pmatrix}a&b\\c&d\end{pmatrix} \in SL(2,\mathbb{Z}).$$

Important special case
$$[P^{m,n}F](g) = [P^{0,\ell}F]\left(\begin{pmatrix}a&b&0\\c&d&0\\0&0&1\end{pmatrix}g\right)$$
$$\ell = \gcd(m,n), \ c = \frac{m}{\gcd(m,n)}, \ d = \frac{n}{\gcd(m,n)}$$

FOURIER EXPANSIONS FOR $SL(3,\mathbb{Z}) \setminus SL(3,\mathbb{R}) / SO(3)$

with $\Gamma^{(2)} = SL(2,\mathbb{Z}), \Gamma^{(2)}_{\infty}$ is its subgroup of unit upper triangular matrices.

MIATELLO-WALLACH CONJECTURE FOR SL($3,\mathbb{Z}$)

Let F be an automorphic function on $SL(3,\mathbb{Z}) \setminus SL(3,\mathbb{R}) / SO(3)$

Assume F is an eigenfunction of all $SL(3,\mathbb{R})$ -invariant differential operators

<u>Conjecture</u>: ϕ has moderate growth, i.e., $F(g) \ll ||g||^A$ for some A > 0.

(this is an assumption in the definition of automorphic form)

In terms of torus variables $a_{y_1,y_2} = \begin{pmatrix} y_1^{2/3} y_2^{1/3} & 0 & 0 \\ 0 & y_1^{-1/3} y_2^{1/3} & 0 \\ 0 & 0 & y_1^{-1/3} y_2^{-2/3} \end{pmatrix}$

The conjecture is that $F(a_{y_1,y_2}) \ll (y_1y_2)^A$ for $y_1, y_2 \ge \sqrt{3/4}$.

Some natural assumptions:

 $F(a_{y_1,y_2}) \ll e^{K(y_1+y_2)}$ for $y_1, y_2 \ge \sqrt{3/4}$ and some K > 0. (ExpGro) Instead,

• (AbsCon) The Fourier series are absolutely convergent for fixed g (implies terms are bounded).

Main Theorem (M-Trinh):

- any counterexample to the Miatello-Wallach Conjecture must violate violate (AbsCon).
- (ExpGro) will be violated unless non-decaying Whittaker functions appear in the Fourier expansion.

Example: no analog of j-function for SL(3,Z).

WHY CAN'T GROWING WHITTAKER FUNCTIONS OCCUR?

$$\begin{aligned} \text{Recall Fourier expansion} \quad F(g) &= \sum_{k \in \mathbb{Z}} [P^{k,0,0}F](g) + \sum_{\ell=1}^{\infty} \sum_{\gamma \in \Gamma_{\infty}^{(2)} \setminus \Gamma^{(2)}} \sum_{k \in \mathbb{Z}} [P^{k,0,\ell}F](\binom{\gamma}{1}g) \\ &= \sum_{\ell \in \mathbb{Z}} [P^{0,0,\ell}F](g) + \sum_{k=1}^{\infty} \sum_{\gamma \in \Gamma_{\infty}^{(2)} \setminus \Gamma^{(2)}} \sum_{\ell \in \mathbb{Z}} [P^{k,0,\ell}F](\binom{1}{\gamma}g) \\ &\text{where} \quad [P^{k,0,\ell}F](g) &= \sum_{m=1}^{6} c(k,\ell,m) \phi_{\lambda}^{(m)}(a_{k,\ell}g) \end{aligned}$$

- KEY IDEA: the same Whittaker functions are summed over and over again using γ. Aside from Jacquet's
 decaying Whittaker function, all grow in the direction that γ pushes towards.
- Recall: <u>Multiplicity 1 theorem.</u> [Piatetski-Shapiro, Shalika] Among the 6 dimensional span of Whittaker functions, only Jacquet's $\phi_{\lambda}^{(6)}(a_{y_1,y_2})$ decays rapidly for large y_1, y_2 .
- <u>Coroot Multiplicity 1</u> [Trinh] Assume $[P^{k,0,\ell}F](a_{t^{-2},t})$, $[P^{k,0,\ell}F](a_{t,t^{-2}}) = O(1)$, $t \to \infty$. Then $[P^{k,0,l}F](g)$ is a scalar multiple of $\phi_{\lambda}^{(6)}(g) =$ Jacquet's $W_{\lambda}(g)$.
- **<u>Consequently</u>** if F's Fourier expansion converges absolutely, it only includes W_{λ} 's.

TRINH'S PROOF OF COROOT MULTIPLICITY 1

Starts with Ishii-Stade representation of Whittaker function:

$$\mathcal{M}_{\lambda}(a_{kt^{-2},\ell t}) = \frac{\pi^{3} |k|^{m+1-\lambda_{3}/2} |\ell|^{m+1+\lambda_{1}/2}}{\sin(\frac{\pi}{2}(\lambda_{1}-\lambda_{2})) \sin(\frac{\pi}{2}(\lambda_{2}-\lambda_{3})) \sin(\frac{\pi}{2}(\lambda_{3}-\lambda_{1}))} \times \sum_{m=0}^{\infty} \frac{\pi^{2m+\lambda_{1}+\lambda_{2}/2} t^{-m-1+\lambda_{3}+\lambda_{1}/2}}{m! \Gamma(m+\frac{\lambda_{1}-\lambda_{3}}{2}+1)} I_{m+(\lambda_{1}-\lambda_{2})/2}(2\pi |k|t^{-2}) I_{m+(\lambda_{2}-\lambda_{3})/2}(2\pi |\ell|t)$$

Consider the integral representation

$$I_{\mu}(x) I_{\nu}(x) = \frac{2}{\pi} \int_{0}^{\pi/2} I_{\mu+\nu}(2x \cos \theta) \cos((\mu-\nu)\theta) d\theta , \quad \text{Re } \mu+\nu > -1$$

Let $\mu = \sigma + it$ and $\nu = \bar{\mu} = \sigma - it$, where $\sigma, t \ge 0$.

Differentiating under the integral sign in σ and t shows that I_{μ} decreases in its real part, and increases in its imaginary part.

Ishii-Stade formula then makes the asymptotics in coroot direction manifest.

MODERATE GROWTH?

We just saw

<u>**Theorem</u>** [M-Trinh] if the Fourier series for F converges absolutely, the Fourier expansion is built out of W's (no M's). Thus</u>

But this does not show F has moderate growth

• Only have reverse implication: moderate growth implies no M's.

There is no a priori control on the Fourier coefficients c(k,l) from $[P^{k,0,\ell}F](g) = c(k,\ell) W_{\lambda}(a_{k,\ell}g)$

We show subexponential estimate $c(k, \ell) = O_{\varepsilon}(e^{\varepsilon \max(|k|, |\ell|)^{1/3} \min(|k|, |\ell|)^{2/3}})$

by using estimates on $W_{\lambda}(a_{k,l}\gamma g)$ for varying γ .

In turn, the subexponential estimate on c(k,l) implies moderate growth. Thus

<u>**Theorem</u>** [M-Trinh] if the Fourier series for F converges absolutely, then F has moderate growth.</u>

EXPONENTIAL GROWTH?

The previous result required the (AbsCon) assumption that the Fourier expansion converges absolutely (can get by with simply boundedness of terms).

A separate assumption is (ExpGro):

 $F(a_{y_1,y_2}) \ll e^{K(y_1+y_2)}$ for $y_1, y_2 \ge \sqrt{3/4}$ and some K > 0.

All automorphic eigenfunctions studied in the literature (to my knowledge) obey such an assumption.

But exp(j(z)) does not.

• There may be a reduction to such an exponential bound using Hecke operators.

Theorem [M-Trinh] If F obeys (ExpGro), then it does not have growing Whittaker functions in its Fourier expansion (only Jacquet's decaying W's).

However, we cannot show F grows moderately.

Nevertheless, enough to rule out the naïve picture that a growing automorphic form looks like j(z), in that it grows exponentially and has M's in its Fourier expansion.

PROOF (ASSUMING AN EXPONENTIAL BOUND)

Fourier coefficients inherit bounds on F, so

$$[P^{0,\ell}F]\left(\begin{pmatrix}a & b & 0\\ c & d & 0\\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}t & 0 & 0\\ 0 & t & 0\\ 0 & 0 & t^{-2}\end{pmatrix}\right) = [P^{m,n}F]\begin{pmatrix}t & 0 & 0\\ 0 & t & 0\\ 0 & 0 & t^{-2}\end{pmatrix} \ll e^{Kt^3}, \ t > 1,$$

SL(2)-Iwasawa: Im $\frac{ai+b}{ci+d} = \frac{1}{c^2+d^2}$, thus

$$\begin{split} \left[P^{0,\ell}F\right] \left(\begin{pmatrix} (c^{2}+d^{2})^{-1/2} \ \theta_{\gamma}(c^{2}+d^{2})^{1/2} \ 0 \\ 0 & (c^{2}+d^{2})^{1/2} \ 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \ 0 & 0 \\ 0 \ 0 & t^{-2} \end{pmatrix} \right) \\ = \\ \sum_{k \in \mathbb{Z}} \left[P^{k,0,\ell}F\right] \left(\begin{pmatrix} (c^{2}+d^{2})^{-1/2} \ \theta_{\gamma}(c^{2}+d^{2})^{1/2} \ 0 \\ 0 & (c^{2}+d^{2})^{1/2} \ 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} t \ 0 & 0 \\ 0 \ t & 0 \\ 0 \ 0 \ t^{-2} \end{pmatrix} \right) \\ \ll e^{Kt^{3}}, \ t > 1 \end{split}$$

Now the growing coroot goes from t^3 to $(c^2+d^2)^{1/2}t^3$, which can be arbitrarily large.

APPLY ZUCKERMAN'S CONJECTURE

(which here is a Theorem due to To and Templier)

 $\log(\phi_{\lambda}^{(m)}(a_{y_1,y_2})) \sim 2\pi \left(p_3^{(m)}(y_1,y_2) - p_1^{(m)}(y_1,y_2) \right)$

Gives very precise behavior of Whittaker functions in y_2 .

For $(c^2+d^2)^{1/2}$ sufficiently large, 3 of these violate the bound on the previous slide.

Use other parabolic to rule out 2 more.

Conclude that only $\phi_{\lambda}^{(6)}(g) =$ Jacquet's W_{λ} occurs.

CONCLUSIONS AND SPECULATIONS

[Miatello-Wallach] made a brave conjecture:

the moderate growth condition in the definition of automorphic forms is automatic in higher rank.

It's generically correct for SL(3,Z)\SL(3,R)/SO(3) with some natural assumptions

Absolute convergence is a big subtlety, as are bounds on Fourier coefficients for such hypothetical forms.

What does this mean?

- We can't expect to see automorphic forms on higher rank with Fourier coefficients that grow faster than polynomials
 - Somewhat problematic for certain string theory expectations
- Greens function Fourier expansion will not generalize easily from $SL(2,\mathbb{Z})$
- Langlands-style automorphic representations are enough to capture harmonic analysis in higher rank
 - Ieaves rank 1 settings separate from the rest of automorphic harmonic analysis.
- Koecher principle is not purely a Hartog's phenomenon.

Thank you for your time and for inviting me