Analytic combinatorics of graphs with marked subgraphs

work in progress of Gwendal Collet, Élie de Panafieu, Danièle Gardy, Bernhard Gittenberger, Vlady Ravelomanana

Technische Universität of Vienna, Austria
Bell Labs France, Nokia
Versailles University, France
Paris-Diderot University, France.

Workshop in Analytic and Probabilistic Combinatorics BIRS, 2016

Graph with 12 vertices, 14 edges, one distinguished triangle.

Graph with 12 vertices, 14 edges, 4 triangles.

Setting
F graph
\mathcal{X}_{F} number of copies of F contained in a random graph, with n vertices and $m \sim c n^{\alpha}$ edges.

Problems

- find α^{\star} such that $\begin{cases}\mathcal{X}_{F}=0 & \text { a.a.s. if } \alpha<\alpha^{\star}, \\ \mathcal{X}_{F} \geq 1 & \text { a.a.s. if } \alpha>\alpha^{\star} .\end{cases}$
- limit law of \mathcal{X}_{F}.

Resolution by Erdős and Rényi (1960), Bollobás (1981), Karoński and Ruciński (1983), Ruciński (1988); probabilistic approach.

Contribution: new approach based on analytic combinatorics (see the book of Flajolet and Sedgewick 2009).

- Labelled vertices,
- labelled oriented edges,
- loops and multiple edges allowed,
- nb of vertices $n(G)$,
- nb of edges $m(G)$,
- nb of multigraphs $n^{2 m}$.

Generating function of the family \mathcal{H}

$$
H(z, w):=\sum_{G \in \mathcal{H}} \frac{w^{m(G)}}{2^{m(G)} m(G)!} \frac{z^{n(G)}}{n(G)!}=\sum_{n, m}\left|\mathcal{H}_{n, m}\right| \frac{w^{m}}{2^{m} m!} \frac{z^{n}}{n!} .
$$

Multigraphs with one distinguished subgraph copy of F
Multigraph F and a set of isolated vertices

$$
F(z, w) e^{z}
$$

add a set of labelled half-edges to each vertex

$$
F\left(z e^{x}, w\right) e^{z \exp (x)}
$$

link the half-edges to build $2 m$ edges

$$
\sum_{m \geq 0}(2 m)!\left[x^{2 m}\right] F\left(z e^{x}, w\right) e^{z \exp (x)} \frac{w^{m}}{2^{m} m!}
$$

Asymptotics

$$
\left|\mathrm{MG}_{n, m}^{F}\right|=n!2^{m} m!\left[z^{n} w^{m}\right] \sum_{\ell \geq 0}(2 \ell)!\left[x^{2 \ell}\right] F\left(z e^{x}, w\right) e^{z \exp (x)} \frac{w^{\ell}}{2^{\ell} \ell!}
$$

Asymptotics

$$
\left|\mathrm{MG}_{n, m}^{F}\right|=n!2^{m} m!\left[z^{n} w^{m}\right] \sum_{\ell \geq 0}(2 \ell)!\left[x^{2 \ell}\right] F\left(z e^{x}, w\right) e^{z \exp (x)} \frac{w^{\ell}}{2^{\ell} \ell!}
$$

Inject the relation $\frac{(2 \ell)!}{2^{\ell} \ell!}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} t^{2 \ell} e^{-t^{2} / 2} d t$

$$
n!2^{m} m!\left[z^{n} w^{m}\right] \sum_{\ell \geq 0}\left[x^{2 \ell}\right] F\left(z e^{x}, w\right) e^{z \exp (x)} w^{\ell} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} t^{2 \ell} e^{-t^{2} / 2} d t
$$

$$
\left|\mathrm{MG}_{n, m}^{F}\right|=n!2^{m} m!\left[z^{n} w^{m}\right] \sum_{\ell \geq 0}(2 \ell)!\left[x^{2 \ell}\right] F\left(z e^{x}, w\right) e^{z \exp (x)} \frac{w^{\ell}}{2^{\ell} \ell!}
$$

Inject the relation $\frac{(2 \ell)!}{2^{\ell} \ell!}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} t^{2 \ell} e^{-t^{2} / 2} d t$
$n!2^{m} m!\left[z^{n} w^{m}\right] \sum_{\ell \geq 0}\left[x^{2 \ell}\right] F\left(z e^{x}, w\right) e^{z \exp (x)} w^{\ell} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} t^{2 \ell} e^{-t^{2} / 2} d t$,
switch sum and integral, and apply $\sum_{\ell}\left[z^{\ell}\right] f(z) x^{\ell}=f(x)$

$$
n!2^{m} m!\left[z^{n} w^{m}\right] \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} F\left(z e^{\sqrt{w} t}, w\right) e^{z \exp (\sqrt{w} t)} e^{-t^{2} / 2} d t
$$

$$
\left|\mathrm{MG}_{n, m}^{F}\right|=n!2^{m} m!\left[z^{n} w^{m}\right] \sum_{\ell \geq 0}(2 \ell)!\left[x^{2 \ell}\right] F\left(z e^{x}, w\right) e^{z \exp (x)} \frac{w^{\ell}}{2^{\ell} \ell!}
$$

Inject the relation $\frac{(2 \ell)!}{2^{\ell} \ell!}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} t^{2 \ell} e^{-t^{2} / 2} d t$
$n!2^{m} m!\left[z^{n} w^{m}\right] \sum_{\ell \geq 0}\left[x^{2 \ell}\right] F\left(z e^{x}, w\right) e^{z \exp (x)} w^{\ell} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} t^{2 \ell} e^{-t^{2} / 2} d t$,
switch sum and integral, and apply $\sum_{\ell}\left[z^{\ell}\right] f(z) x^{\ell}=f(x)$

$$
n!2^{m} m!\left[z^{n} w^{m}\right] \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} F\left(z e^{\sqrt{w} t}, w\right) e^{z \exp (\sqrt{w} t)} e^{-t^{2} / 2} d t
$$

saddle-point method $\left|\mathrm{MG}_{n, m}^{F}\right| \sim n^{2 m} F\left(n, m / n^{2}\right)$.

Multigraphs with n vertices and $m \sim c n^{\alpha}$ edges.

Nb of multigraphs that contain at least one copy of F
$\leq \mathrm{nb}$ of multigraphs with one distinguished copy

$$
\mathbb{P}\left(\mathcal{X}_{F} \geq 1\right) \leq \frac{\left|\mathrm{MG}_{n, m}^{F}\right|}{n^{2 m}} \sim F\left(n, 2 m / n^{2}\right)
$$

By definition, we have
$F\left(n, 2 m / n^{2}\right)=\frac{\left(2 m / n^{2}\right)^{m(F)}}{2^{m(F)} m(F)!} \frac{n^{n(F)}}{n(F)!}=\frac{c^{m(F)}}{m(F)!n(F)!} n^{n(F)-(2-\alpha) m(F)}$
which tends to 0 if $\alpha<2-\frac{n(F)}{m(F)}$. Thus $\alpha^{\star} \geq 2-\frac{n(F)}{m(F)}$.

Multigraphs with all subgraphs F marked

$\mathrm{MG}(z, w, u)$: gf of multigraphs where each subgraph F is marked by u.
Patchwork: set of copies of F that might share vertices and edges.
Generating function $P(z, w, u)$.

Inclusion-exclusion: consider MG(z, w, $u+1)$.
Now each subgraph is either marked or left unmarked.
By definition, the marked subgraphs form a patchwork

$$
\operatorname{MG}(z, w, u+1)=\sum_{m \geq 0}(2 m)!\left[x^{2 m}\right] P\left(z e^{x}, w, u\right) e^{z \exp (x)} \frac{w^{m}}{2^{m} m!}
$$

Application: strictly balanced multigraphs

F is strictly balanced if all its strict subgraphs are less dense

$$
\frac{m(F)}{n(F)}>\max _{H \subseteq F} \frac{m(H)}{n(H)} .
$$

In that case, any pair of non-disjoint copies has a higher density

so they typically do not appear for $m=\Theta\left(n^{2-\frac{n(F)}{m(F)}}\right)$

Thus for $m \sim c n^{\alpha^{\star}}$, we need only consider disjoint patchworks

$$
P(z, w, u) \approx e^{u F(z, w)}
$$

Nb of multigraphs with n vertices, $m \sim c n^{\alpha^{\star}}$ edges, that contain exactly t copies of F

$$
\begin{aligned}
\left|\mathrm{MG}_{n, m, t}\right| & =n!2^{m} m!\left[z^{n} w^{m} u^{t}\right] \sum_{\ell \geq 0}(2 \ell)!\left[x^{2 \ell}\right] P\left(z e^{x}, w, u-1\right) e^{z \exp (x)} \frac{w^{m}}{2^{\ell} \ell!} \\
& \sim n^{2 m}\left[u^{t}\right] e^{(u-1) F\left(n, 2 m / n^{2}\right)}=n^{2 m}\left[u^{t}\right] e^{(u-1) \frac{c^{m(F)}}{m(F)!n(F)!}}
\end{aligned}
$$

Thus the limit law of \mathcal{X}_{F} is Poisson $\left(\frac{c^{m(F)}}{m(F)!n(F)!}\right)$.

Conclusion

Results presented

- exact expression for the nb of multigraphs with a given number of vertices, edges, and subgraphs copies of F,
- new proof of the limit law of \mathcal{X}_{F} in the critical window when F is strictly balanced.
Other results
- from multigraphs to simple graphs,
- induced subgraphs,
- marked subgraphs and degree constraints.

In progress

- limit law of \mathcal{X}_{F} outside the critical window,
- and when F is not strictly balanced,
- phase transition of 2-SAT.

