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Graph with 12 vertices, 14 edges, one distinguished triangle.
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Graph with 12 vertices, 14 edges, 4 triangles.



Problem

Setting
F graph
XF number of copies of F contained in a random graph,

with n vertices and m ∼ cnα edges.

Problems

find α? such that

{
XF = 0 a.a.s. if α < α?,

XF ≥ 1 a.a.s. if α > α?.

limit law of XF .

Resolution by Erdős and Rényi (1960), Bollobás (1981), Karoński
and Ruciński (1983), Ruciński (1988); probabilistic approach.

Contribution: new approach based on analytic combinatorics
(see the book of Flajolet and Sedgewick 2009).



Multigraphs

Labelled vertices,

labelled oriented edges,

loops and multiple edges allowed,

nb of vertices n(G ),

nb of edges m(G ),

nb of multigraphs n2m.
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Generating function of the family H

H(z ,w) :=
∑
G∈H

wm(G)

2m(G)m(G )!

zn(G)

n(G )!
=
∑
n,m

|Hn,m|
wm

2mm!

zn

n!
.



Multigraphs with one distinguished subgraph copy of F

Multigraph F and a set of isolated vertices

F (z ,w)ez

1

2

3

4

5

6

7

12

3

add a set of labelled half-edges to each vertex

F (zex ,w)ez exp(x)
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link the half-edges to build 2m edges

∑
m≥0

(2m)![x2m]F (zex ,w)ez exp(x)
wm

2mm!
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Asymptotics

|MGF
n,m | = n!2mm![znwm]

∑
`≥0

(2`)![x2`]F (zex ,w)ez exp(x)
w `

2``!

Inject the relation (2`)!
2``!

= 1√
2π

∫ +∞
−∞ t2`e−t

2/2dt

n!2mm![znwm]
∑
`≥0

[x2`]F (zex ,w)ez exp(x)w ` 1√
2π

∫ +∞

−∞
t2`e−t

2/2dt,

switch sum and integral, and apply
∑

`[z
`]f (z)x` = f (x)

n!2mm![znwm]
1√
2π

∫ +∞

−∞
F (ze

√
wt ,w)ez exp(

√
wt)e−t

2/2dt,

saddle-point method |MGF
n,m | ∼ n2mF

(
n,m/n2

)
.
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Lower bound on α?

Multigraphs with n vertices and m ∼ cnα edges.

Nb of multigraphs that contain at least one copy of F
≤ nb of multigraphs with one distinguished copy

P(XF ≥ 1) ≤
|MGF

n,m |
n2m

∼ F (n, 2m/n2).

By definition, we have

F (n, 2m/n2) =
(2m/n2)m(F )

2m(F )m(F )!

nn(F )

n(F )!
=

cm(F )

m(F )!n(F )!
nn(F )−(2−α)m(F )

which tends to 0 if α < 2− n(F )
m(F ) . Thus α? ≥ 2− n(F )

m(F ) .



Multigraphs with all subgraphs F marked

MG(z ,w , u): gf of multigraphs where each subgraph F is marked
by u.

Patchwork: set of copies of F that might share vertices and edges.
Generating function P(z ,w , u).

Inclusion-exclusion: consider MG(z ,w , u + 1).
Now each subgraph is either marked or left unmarked.
By definition, the marked subgraphs form a patchwork

MG(z ,w , u + 1) =
∑
m≥0

(2m)![x2m]P(zex ,w , u)ez exp(x)
wm

2mm!
.



Application: strictly balanced multigraphs

F is strictly balanced if all its strict subgraphs are less dense

m(F )

n(F )
> max

H(F

m(H)

n(H)
.

In that case, any pair of non-disjoint copies has a higher density

so they typically do not appear for m = Θ
(
n
2− n(F )

m(F )

)

0 2− n(F )
m(F ) > 2− n(F )

m(F ) α



Application: strictly balanced multigraphs

Thus for m ∼ cnα
?
, we need only consider disjoint patchworks

P(z ,w , u) ≈ euF (z,w).

Nb of multigraphs with n vertices, m ∼ cnα
?

edges, that contain
exactly t copies of F

|MGn,m,t | = n!2mm![znwmut ]
∑
`≥0

(2`)![x2`]P(zex ,w , u − 1)ez exp(x)
wm

2``!

∼ n2m[ut ]e(u−1)F (n,2m/n
2) = n2m[ut ]e

(u−1) cm(F )

m(F )!n(F )!

Thus the limit law of XF is Poisson
(

cm(F )

m(F )!n(F )!

)
.



Conclusion

Results presented

exact expression for the nb of multigraphs with a given
number of vertices, edges, and subgraphs copies of F ,

new proof of the limit law of XF in the critical window when
F is strictly balanced.

Other results

from multigraphs to simple graphs,

induced subgraphs,

marked subgraphs and degree constraints.

In progress

limit law of XF outside the critical window,

and when F is not strictly balanced,

phase transition of 2-SAT.


