Subgraph Counting in Series-Parallel Graphs and Infinite Dimensional Systems of Functional Equations

Michael Drmota
joint work with L. Ramos and J. Rue
Institut für Diskrete Mathematik und Geometrie
TU Wien
michael.drmota@tuwien.ac.at
http://www.dmg.tuwien.ac.at/drmota/

Workshop in Analytic and Probabilistic Combinatorics
Banff, BIRS, Oct. 23-28, 2016

Series-Parallel Graphs

Series-parallel extension of a tree (if we restict to connected graphs)

Series-extension:

Parallel-extension:

Series-Parallel Graphs

Equivalent Definitions

- $\operatorname{Ex}\left(K_{4}\right)$
- tree-width ≤ 2
- nested ear decomposition (if connected)

Series-Parallel Graphs

Generating functions

$b_{n, m} \ldots$ number of 2-connected vertex labelled series-parallel graphs with n vertices and m edges

$$
B(x, y)=\sum_{n, m} b_{n, m} \frac{x^{n}}{n!} y^{m}
$$

$c_{n, m} \ldots$ number of connected vertex labelled series-parallel graphs with n vertices and m edges

$$
C(x, y)=\sum_{n, m} c_{n, m} \frac{x^{n}}{n!} y^{m}
$$

Series-Parallel Graphs

Generating functions

$$
\begin{aligned}
& \frac{\partial C(x, y)}{\partial x}=\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
& \frac{\partial B(x, y)}{\partial y}=\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} \\
& D(x, y)=y+S(x, y)+P(x, y) \\
& S(x, y)=\frac{x(P(x, y)+y)^{2}}{1-x(P(x, y)+y)} \\
& P(x, y)=\left(e^{S(x, y)}-1-S(x, y)\right)+y\left(e^{S(x, y)}-1\right)
\end{aligned}
$$

Series-Parallel Graphs

Asymptotic enumeration

[Bodirsky+Gimenez+Kang+Noy 2007]

$$
c_{n}=\sum_{m} c_{n, m} \sim c n^{-5 / 2} \rho^{-n} n!
$$

with $c=0.0067912 \ldots$ and $\rho=0.11021 \ldots$

Block-Decomposition

Block-Decomposition

Block-Decomposition

Block-Decomposition

block: 2-connected component (= maximal 2-connected subgraph)

Block-stable graph class $\mathcal{G}: \mathcal{G}$ contains the one-edge graph and $G \in \mathcal{G}$ if and only if all blocks of G are contained in \mathcal{G}.

Equivalently, the 2 -connected graphs of \mathcal{G} and the one-edge graph generate all graphs of \mathcal{G}.

Examples: Planar graphs, series-parallel graphs, minor-closed graph classes etc.
$B(x) \ldots$ GF for 2 -connected graphs in \mathcal{G}
$C(x) \ldots$ GF for connected graphs in \mathcal{G}
[We will consider here only connected graphs]

Labelled vs. Unlabelled Graphs

Labelled vs. Unlabelled Graphs

Labelled vs. Unlabelled Graphs

$$
\frac{x^{5}}{5!}
$$

x^{5}

Generating Functions

$g_{n} \ldots$ number of graphs of size n (in a given graph class)

Labelled Graphs

$$
G(x)=\sum_{n \geq 0} g_{n} \frac{x^{n}}{n!}
$$

Unlabelled Graphs

$$
G(x)=\sum_{n \geq 0} g_{n} x^{n}
$$

Generating Functions for Block-Decomposition

Vertex-rooted graphs: one vertext (the root) is distinguished (and usually discounted, that is, it gets no label)

Generating function: (in den labelled case)

$$
G^{\bullet}(x)=G^{\prime}(x)
$$

Generating Functions for Block-Decomposition

(in the labelled case)

$$
C^{\bullet}(x)=e^{B^{\bullet}\left(x C^{\bullet}(x)\right)}
$$

Generating Functions for Block-Decomposition

(in the labelled case)

$$
\frac{\partial C(x, y)}{\partial x}=\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right)
$$

Labelled Trees

Rooted Trees:

$$
B^{\bullet}(x)=x
$$

$T(x)=x C^{\bullet}(x) \ldots$ generating function of rooted, labelled trees

$$
C^{\bullet}(x)=e^{B^{\bullet}\left(x C^{\bullet}(x)\right)} \Longrightarrow T(x)=x e^{T(x)}
$$

Remark: $\tilde{T}(x)$... GF for unrooted labelled trees:

$$
\tilde{T}(x)^{\prime}=\frac{1}{x} T(x) \quad \Longrightarrow \quad \tilde{T}(x)=T(x)-\frac{1}{2} T(x)^{2}
$$

Outerplanar Graphs

All vertices are on the infinite face.

Outerplanar Graphs

Generating functions

$$
\begin{aligned}
& C^{\bullet}(x)=e^{B^{\bullet}\left(x C^{\bullet}(x)\right)} \\
& B^{\bullet}(x)=\frac{1+5 x-\sqrt{1-6 x+x^{2}}}{8}
\end{aligned}
$$

2-connected outerplanar graphs $=$ dissections of the n-gon

Series-Parallel Graphs

Generating functions

$$
\begin{aligned}
& \frac{\partial C(x, y)}{\partial x}=\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
& \frac{\partial B(x, y)}{\partial y}=\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} \\
& D(x, y)=y+S(x, y)+P(x, y) \\
& S(x, y)=\frac{x(P(x, y)+y)^{2}}{1-x(P(x, y)+y)} \\
& P(x, y)=\left(e^{S(x, y)}-1-S(x, y)\right)+y\left(e^{S(x, y)}-1\right)
\end{aligned}
$$

Labelled Planar Graphs

$$
\begin{aligned}
& \frac{\partial C(x, y)}{\partial x}=\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
& \frac{\partial B(x, y)}{\partial y}=\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} \\
& \frac{M(x, D)}{2 x^{2} D}=\log \left(\frac{1+D}{1+y}\right)-\frac{x D^{2}}{1+x D} \\
& M(x, y)=x^{2} y^{2}\left(\frac{1}{1+x y}+\frac{1}{1+y}-1-\frac{(1+U)^{2}(1+V)^{2}}{(1+U+V)^{3}}\right) \\
& U(x, y)=x y(1+V(x, y))^{2} \\
& V(x, y)=y(1+U(x, y))^{2}
\end{aligned}
$$

Sub-critical Graphs

Functional equations

Suppose that $A(x)=\Phi(x, A(x))$, where $\Phi(x, a)$ has a power series expansion at (0,0) with non-negative coefficients and $\Phi_{a a}(x, a) \neq 0$.

Let $x_{0}>0, a_{0}>0$ (inside the region of convergence of Φ) satisfy the system of equations:

$$
a_{0}=\Phi\left(x_{0}, a_{0}\right), \quad 1=\Phi_{a}\left(x_{0}, a_{0}\right)
$$

Then there exists analytic function $g(x), h(x)$ such that locally

$$
A(x)=g(x)-h(x) \sqrt{1-\frac{x}{x_{0}}}
$$

Remark. If there is no x_{0}, a_{0} inside the region of convergence of Φ then the singular behaviour of Φ determines the singular behaviour of $A(x)!!!$

Sub-critical Graphs

$$
\begin{aligned}
A(x)=x C^{\bullet}(x), \Phi(x, a) & =x e^{B^{\bullet}(a)}, x C^{\bullet}(x)=x e^{B^{\bullet}\left(x C^{\bullet}(x)\right)} \\
& \Longrightarrow A(x)=\Phi(x, A(x))
\end{aligned}
$$

Case 1: the sulb-critical case. The system (note that $B^{\bullet}(x)=B^{\prime}(x)$)

$$
a_{0}=x_{0} e^{B^{\prime}\left(a_{0}\right)}, \quad 1=x_{0} e^{B^{\prime}\left(a_{0}\right)} B^{\prime \prime}\left(a_{0}\right)
$$

has positive solutions x_{0}, a_{0} such that a_{0} is smaller than the radius of convergence η of B^{\bullet}. Eliminating $x_{0}: a_{0} B^{\prime \prime}\left(a_{0}\right)=1$. Thus

$$
\eta B^{\prime \prime}(\eta)>1
$$

Case 2: the critical case. The other case:

$$
\eta B^{\prime \prime}(\eta) \leq 1 \text {. }
$$

Here the singular behaviour of B^{\bullet} determines the singular behaviour of $C^{\bullet}(x)$.

Sub-critical Graphs

- Trees are sub-critical
- Outerplanar graphs are sub-critical
- Series-parallel graphs are sub-critical
- Planar graphs are critical

Sub-critical Graphs

Conjecture [M. Noy]

Let \mathcal{G} be a minor closed graph class, that is, $\mathcal{G}=\operatorname{Ex}\left(H_{1}, \ldots, H_{k}\right)$. \mathcal{G} is sub-critical \Longleftrightarrow one of the excluced minors H_{1}, \ldots, H_{k} is planar.

- Trees: Ex(K_{3})
- Outerplanar Graphs: Ex $\left(K_{4}, K_{2,3}\right)$
- Series parallel Graphs: Ex $\left(K_{4}\right)$
- Planar Graphs: Ex $\left(K_{5}, K_{3,3}\right)$

Sub-critical Graphs

Lemma. Suppose that $B(x)$ has radius of convergence $\eta \in(0, \infty]$.

$$
\lim _{x \rightarrow \eta} B^{\prime \prime}(x)=\infty \quad \Longrightarrow \quad \text { sulb-critical. }
$$

Corollary If $B^{\bullet}(x)=B^{\prime}(x)$ is entire or has a squareroot singularity:

$$
B^{\bullet}(x)=g(x)-h(x) \sqrt{1-\frac{x}{\eta}},
$$

then we are in the sub-critical case.

This applies for outerplanar and series-parallel graphs.

Sub-critical Graphs

What does "sub-critical" mean?
In a sub-critical graph class the average size of the 2-connected components is bounded.
\Longrightarrow This leads to a tree like structure.
\Longrightarrow The law of large numbers should apply so that we can expect
universal behaviors that are independent of the the precise structure of 2-connected components.

Unlabelled Graph Classes

Cycle index sums

$$
Z_{\mathcal{G}}\left(s_{1}, s_{2}, \ldots\right):=\sum_{n} \frac{1}{n!} \sum_{\substack{\sigma, g \in \mathfrak{S}_{n} \times \mathcal{G}_{n} \\ \sigma \cdot g=g}} s_{1}^{c_{1}(\sigma)} s_{2}^{c_{2}(\sigma)} \ldots s_{n}^{c_{n}(\sigma)}
$$

where $c_{j}(\sigma)$ denotes the number of cycles of size j in $\sigma \in \mathfrak{S}_{n}$

$$
\begin{gathered}
G(x)=Z_{\mathcal{G}}\left(x, x^{2}, x^{3}, \cdots\right) \\
Z_{\mathcal{G}} \bullet\left(s_{1}, s_{2}, \ldots\right)=\frac{\partial}{\partial s_{1}} Z_{\mathcal{G}}\left(s_{1}, s_{2}, \ldots\right) \\
G^{\bullet}(x)=Z_{\mathcal{G}} \bullet\left(x, x^{2}, x^{3}, \cdots\right)=\frac{\partial}{\partial s_{1}} Z_{\mathcal{G}}\left(x, x^{2}, x^{3}, \cdots\right)
\end{gathered}
$$

Unlabelled Graph Classes

Block decomposition

$$
C^{\bullet}(x)=\exp \left(\sum_{i \geq 1} \frac{1}{i} Z_{B^{\bullet}}\left(x^{i} C^{\bullet}\left(x^{i}\right), x^{2 i} C^{\bullet}\left(x^{2 i}\right), \ldots\right)\right)
$$

- Dichotomy between sulb-critical and critical can be defined in a natural way.
- Unlabelled trees are sub-critical.
- Unlabelled outerplanar graphs are sub-critical
- Unlabelled series-parallel graphs are sulb-critical.

Sub-critical Graphs

Universal properties

- Asymptotic enumeration:

Labelled case:

$$
c_{n} \sim c n^{-5 / 2} \rho^{-n} n!
$$

Unlabelled case:

$$
c_{n} \sim c n^{-5 / 2} \rho^{-n}
$$

($c>0, \rho \ldots$ radius of convergence of $C(z)$)
[D.+Fusy+Kang+Kraus+Rue 2011]

Sub-critical Graphs

- Asymptotic enumeration:

$$
\begin{gathered}
C^{\bullet}(x)=e^{B^{\bullet}\left(x C^{\bullet}(x)\right.} \\
\longrightarrow \quad x C^{\bullet}(x)=x C^{\prime}(x)=g(x)-h(x) \sqrt{1-\frac{x}{\rho}} \\
\longrightarrow \quad\left[x^{n}\right] x C^{\prime}(x)=\frac{n c_{n}}{n!} \sim c n^{-3 / 2} \rho^{-n} \\
\longrightarrow \quad c_{n} \sim c n^{-5 / 2} \rho^{-n} n!.
\end{gathered}
$$

Additive Parameters in Subcritical Graph Classes

Theorem 1 [D.+Fusy+Kang+Kraus+Rue]
$X_{n} \ldots$ number of edges / number of blocks / number of cut-vertices / number of vertices of degree k

$$
\Longrightarrow \frac{X_{n}-\mu n}{\sqrt{n}} \rightarrow N\left(0, \sigma^{2}\right)
$$

with $\mu>0$ and $\sigma^{2} \geq 0$.

Remark. There is an easy to check "combinatorial condition" that ensures $\sigma^{2}>0$.

Additive Parameters in Subcritical Graph Classes

Proof Methods:

 + singularity analysis (always squareroot singularity)
E.g: number of edges:

$$
C^{\bullet}(x, y)=e^{B^{\bullet}\left(x C^{\bullet}(x, y), y\right)}
$$

or number of 2-connected components:

$$
\begin{gathered}
C^{\bullet}(x, y)=e^{y B^{\bullet}\left(x C^{\bullet}(x, y)\right)} \\
\longrightarrow \quad C^{\bullet}(x, y)=g(x, y)-h(x, y) \sqrt{1-\frac{x}{\rho(y)}} \\
\longrightarrow \quad\left[x^{n}\right] C^{\bullet}(x, y) \sim c(y) \rho(y)^{-n} n^{-3 / 2}
\end{gathered}
$$

+ application of Quasi-Power-Theorem (by Hwang).

Graph Limits

$\mathcal{T}_{e} \ldots$ continuum random tree (CRT)

Theorem 2 [Panagiotou+Stufler + Weller]
\mathcal{C}... sub-critical graph class of connected graphs

$$
\Longrightarrow \quad \frac{c}{\sqrt{n}} \mathcal{C}_{n} \rightarrow \mathcal{T}_{e}
$$

with respect to the Gromov-Hausdorff metric, where $c>0$ is a constant.

Corollary. The diameter D_{n} as well as a typical distance in a subcritical graph is or order \sqrt{n}.

Graph Limits

Theorem 3 [Stufler, Georgakopoulos+Wagner]
\mathcal{C}... sub-critical graph class of connected graphs
Then there exists a random rooted graph \hat{C}^{\bullet} such that for all $R>0$ the R-neighborhood of a random vertex of a random graph in \mathcal{C} has in the limit the same distribution as the R-neighborhood of the root of \widehat{C}^{\bullet}.

Remark. \hat{C}^{\bullet} is the Benjamini-Schramm limit. All local structures stabilize.

Graph Limits

Corollary [Stufler]
\mathcal{C}... sub-critical graph class of connected graphs

H ... fixed graph
$X_{n}^{(H)} \ldots$ number of occurences of H as a subgraph in graphs of size n

$$
\Longrightarrow \quad X_{n}^{(H)} / n \rightarrow c \quad \text { in prob. }
$$

for some constant c.

Subgraph Counting

Theorem [D.+Ramos+Rue]
\mathcal{G}... sub-critial graph class, $H \in \mathcal{G}$ fixed.
$X_{n}^{(H)} \ldots$ number of occurences of H as a subgraph in graphs of size n

$$
\Longrightarrow \frac{X_{n}^{(H)}-\mu n}{\sqrt{n}} \rightarrow N\left(0, \sigma^{2}\right)
$$

with $\mu>0$ and $\sigma^{2} \geq 0$.

Remark. The proof is easy if H is 2-connected $=$ additive parameter!!!

Subgraph Counting

$H=P_{2} \ldots$ path of length 2
$B_{j}^{\bullet}\left(w_{1}, w_{2}, w_{3}, \ldots ; u\right) \ldots$ generating function of blocks in \mathcal{G}, where the root has degree j, where w_{i} counts the number of non-root vertices of degree i, and where u counts the number of occurrences of $H=P_{2}$.
$C_{j}^{\bullet}(x, u) \ldots$ generating function of connected rooted graphs in \mathcal{G}, where the root vertex has degree j, where x counts the number of (all) vertices and u the number of occurrences of $H=P_{2}$.

Subgraph Counting

System of infinite number of equations

$$
\begin{aligned}
C_{j}^{\bullet}(x, u)= & \sum_{s \geq 0} \frac{1}{s!} \sum_{j_{1}+\cdots+j_{s}=j} u^{\sum_{i_{1}<i_{2}} j_{i_{1}} j_{i_{2}}} \\
& \times \prod_{i=1}^{s} B_{j_{i}}^{\bullet}\left(x \sum_{\ell_{1} \geq 0} u^{\ell_{1}} C_{\ell_{1}}^{\bullet}(x, u), x \sum_{\ell_{2} \geq 0} u^{2 \ell_{2}} C_{\ell_{2}}^{\bullet}(x, u), \ldots ; u\right), \\
& (j \geq 0)
\end{aligned}
$$

$$
\begin{aligned}
C_{j}^{\bullet}(x, 1) & =\sum_{s \geq 0} \frac{1}{s!} \sum_{j_{1}+\cdots+j_{s}=j} \prod_{i=1}^{s} B_{j_{i}}^{\bullet}\left(x C^{\bullet}(x), x C^{\bullet}(x), \ldots ; 1\right) \\
C^{\bullet}(x) & =\sum_{\ell \geq 0} C_{\ell}^{\bullet}(x, 1)
\end{aligned}
$$

Subgraph Counting

System of infinite number of equations
Lemma [D.+Gittenberger+Morgenbesser]
Suppose that $\mathbf{A}(z)=\left(A_{j}(z)\right)_{j \geq 0}=\boldsymbol{\Phi}(z, \mathbf{A}(z))$ is a positive, non-linear, infinite and strongly connected system such that the Jacobian $\Phi_{\mathrm{a}}(z, a)$ is compact for $z>0$ and $\mathbf{a}>0$.

Let $z_{0}>0, \mathbf{a}_{0}=\left(a_{j, 0}\right)_{j \geq 0}$ (inside the region of convergence) satisfy the system of equations:

$$
\mathbf{a}_{0}=\Phi\left(z_{0}, \mathbf{a}_{0}\right), \quad r\left(\Phi_{\mathbf{a}}\left(z_{0}, \mathbf{a}_{0}\right)\right)=1,
$$

where $r(\cdot)$ denotes the spectral radius.
Then there exists analytic function $g_{j}(z), h_{j}(z) \neq 0$ such that locally

$$
A_{j}(z)=g_{j}(z)-h_{j}(z) \sqrt{1-\frac{z}{z_{0}}} .
$$

with $g_{j}\left(z_{0}\right)=a_{j, 0}$ and $h_{j}\left(z_{0}\right)>0$.

Subgraph Counting

Extension [D.+Gittenberger+Morgenbesser]
Suppose that $\mathbf{A}(z, u)=\left(A_{j}(z, u)\right)_{j \geq 0}=\boldsymbol{\Phi}(z, u, \mathbf{A}(z, u))$ is a positive, non-linear, infinite and strongly connected system such that the Jacobian $\Phi_{\mathbf{a}}(z, \mathbf{1}, \mathbf{a})$ is compact for $z>0$ and $\mathbf{a}>\mathbf{0}$.

Let $z_{0}>0, \mathbf{a}_{0}=\left(a_{j, 0}\right)_{j \geq 0}$ (inside the region of convergence) satisfy the system of equations:

$$
\mathbf{a}_{0}=\Phi\left(z_{0}, 1, \mathbf{a}_{0}\right), \quad r\left(\Phi_{\mathbf{a}}\left(z_{0}, 1, \mathbf{a}_{0}\right)\right)=1
$$

where $r(\cdot)$ denotes the spectral radius.

Then there exists analytic function $g_{j}(z, u), h_{j}(z, u) \neq 0$ and $\rho(u)$ such that locally

$$
A_{j}(z, u)=g_{j}(z, u)-h_{j}(z, u) \sqrt{1-\frac{z}{\rho(u)}} .
$$

with $g_{j}\left(z_{0}, 1\right)=a_{j, 0}, h_{j}\left(z_{0}, 1\right)>0$, and $\rho(1)=z_{0}$.

Subgraph Counting

Central Limit Theorem

$$
\begin{gathered}
\Longrightarrow \quad A(z, u)=g(z, u)-h(z, u) \sqrt{1-\frac{z}{\rho(u)}} \\
\longrightarrow \quad\left[z^{n}\right] A(z, u) \sim C(u) \rho(u)^{-n} n^{-3 / 2}
\end{gathered}
$$

+ application of Quasi-Power-Theorem (by Hwang) implies CLT.

Subgraph Counting

Special case of infinite system

$$
A_{j}=\Phi_{j}\left(z, u, A_{0}, A_{1}, \ldots\right), \quad j \geq 0
$$

with

$$
\Phi_{j}\left(z, 1, A_{0}, A_{1}, \ldots\right)=\widetilde{\Phi}_{j}\left(z, A_{0}+A_{1}+\cdots\right)
$$

so that $A=A_{0}+A_{1}+\cdots$ satisfies

$$
A=\widetilde{\Phi}(z, A)
$$

where

$$
\begin{gathered}
\tilde{\Phi}(z, A)=\sum_{j \geq 0} \tilde{\Phi}_{j}(z, A)=\sum_{j \geq 0} \Phi\left(z, 1, A_{0}, A_{1}, \ldots\right) \\
\Longrightarrow \frac{\partial \Phi_{j}}{\partial a_{i}}(z, 1, \mathbf{a}) \text { does not depend on } i \\
\\
\Longrightarrow \Phi_{\mathbf{a}}(z, 1, \mathbf{a}) \text { is compact }
\end{gathered}
$$

Thank You for Your Attention!

