On the game of Memory

Paweł Hitczenko
(largely based on a joint work with H. Acan)

October 27, 2016

Description of the game

- A deck of n pairs of cards is shuffled and the cards are laid face down in a table (a row).
- In a move a player flips a card and then a second one. If they match the player collects them and continues.
- If the cards do not match they are flipped over again and play passes to the next player.
- The play ends when all pairs have been removed and the player who collects the most pairs is the winner.

Solitaire Version

- The game is played by a single person.
- The goal is to finish the game in the smallest possible number of moves.

Solitaire Version

- The game is played by a single person.
- The goal is to finish the game in the smallest possible number of moves.
- Under the assumption that the player has perfect memory, Velleman and Warrington (2013) studied the expected values of three characteristics of the game, namely:
- the length of the game, G_{n},
- the waiting time till the first match, F_{n}, and
- the number of lucky moves, L_{n} (a lucky move is a move in which the two cards, neither of which has been flipped before, match).

Velleman-Warrington results

Theorem (Velleman-Warrington (2013))

In a game played with n pairs of cards, as $n \rightarrow \infty$,

- $\mathbb{E} F_{n}=\frac{2^{2 n}}{\binom{2 n}{n}} \sim \sqrt{\pi n}$,
- $\mathbb{E} L_{n} \sim \ln 2$,
- $\mathbb{E} G_{n} \sim(3-2 \ln 2) n$.

Our results

Theorem (Acan-H. (2016))

In a game played with n pairs of cards, as $n \rightarrow \infty$,

- $\frac{F_{n}}{2 \sqrt{n}} \xrightarrow{d} W$,
where W is a standard Rayleigh random variable, i.e. a variable with density $2 x e^{-x^{2}}$ if $x>0$ and 0 otherwise.
- $L_{n} \xrightarrow{d} \operatorname{Pois}(\ln 2)$,
- $\frac{G_{n}-(3-2 \ln 2) n}{\sqrt{n}} \xrightarrow{d} N\left(0, \sigma^{2}\right), \quad \sigma^{2}=4 \ln ^{2} 2+2 \ln 2-13 / 4$.

Our results

In fact, we know more:

Theorem (Acan-H. (2016))

If $F_{n, i}$ is the number of moves between the $(i-1)^{\text {st }}$ and the $i^{\text {th }}$ match, then for every fixed $k \geq 1$

$$
\left(\frac{F_{n, 1}}{2 \sqrt{n}}, \frac{F_{n, 2}}{2 \sqrt{n}}, \ldots, \frac{F_{n, k}}{2 \sqrt{n}}\right) \xrightarrow{d}\left(W_{1}, \ldots, W_{k}\right),
$$

where $\left(W_{1}, \ldots, W_{k}\right)$ has joint density given by

$$
2^{k} x_{1}\left(x_{1}+x_{2}\right) \cdots\left(x_{1}+\cdots+x_{k}\right) e^{-\left(x_{1}+\cdots+x_{k}\right)^{2}}
$$

if $x_{1}, \ldots, x_{k} \geq 0$ and 0 otherwise.

Methods

- The proof that $\frac{F_{n}}{2 \sqrt{n}} \xrightarrow{d} W$ is straightforward:

$$
\begin{aligned}
\mathbb{P}\left(F_{n}>t\right) & =\mathbb{P}(\text { first } t \text { cards are distinct }) \\
& =\frac{\binom{n}{t} \cdot t!\cdot\left[(2 n-t)!/ 2^{n-t}\right]}{(2 n)!/ 2^{n}}=\frac{2^{t} \cdot(n)_{t}}{(2 n)_{t}},
\end{aligned}
$$

where $(x)_{t}=x(x-1) \ldots(x-(t-1))$ is the falling factorial (but a more complicated proof will be sketched later).

Methods

- The proof that $\frac{F_{n}}{2 \sqrt{n}} \xrightarrow{d} W$ is straightforward:

$$
\begin{aligned}
\mathbb{P}\left(F_{n}>t\right) & =\mathbb{P}(\text { first } t \text { cards are distinct }) \\
& =\frac{\binom{n}{t} \cdot t!\cdot\left[(2 n-t)!/ 2^{n-t}\right]}{(2 n)!/ 2^{n}}=\frac{2^{t} \cdot(n)_{t}}{(2 n)_{t}},
\end{aligned}
$$

where $(x)_{t}=x(x-1) \ldots(x-(t-1))$ is the falling factorial (but a more complicated proof will be sketched later).

- That $L_{n} \xrightarrow{d} \operatorname{Pois}(\ln 2)$ is more involved, but still direct and relies on a method of (factorial) moments.

Length of the game

Length of the game:

- Velleman- Warrington showed that

$$
G_{n}=\frac{3}{2} n+\frac{1}{2} \sum_{i} B_{n, 2 i}-L_{n}
$$

where $B_{n, j}$ is the number of blocks of size j.

Here, $G_{n}=\frac{3}{2} \cdot 6+\frac{1}{2}(1+1)-0=10$ (3 moves to remove 1's, 2 for 2's, 1 for 3's, 2 for 4 's, 1 for 5 's, and 1 for 6 's).
(Lucky move: an even length block ending with a pair.)

Joint distribution of the lengths of blocks

Theorem

As $n \rightarrow \infty$, in \mathbb{R}^{∞},

$$
\frac{1}{\sqrt{n}}\left(B_{n, i}-\frac{4 n}{(i+2)_{3}}\right)_{i=1}^{\infty} \xrightarrow{d}\left(\Gamma_{i}\right)_{i=1}^{\infty},
$$

where $\left(\Gamma_{i}\right)$ are jointly Gaussian with mean zero and covariance matrix $\Sigma=\left[\sigma_{i j}\right]$ given by

$$
\sigma_{i j}= \begin{cases}\frac{16}{(i+2)_{3}(j+2)_{3}}-\frac{24}{(i+j+2)_{4}}, & \text { if } i \neq j \\ \frac{4}{(j+2)_{3}}+\frac{16}{(j+2)_{3}^{2}}-\frac{24}{(2 j+2)_{4}}, & \text { if } i=j\end{cases}
$$

From that, obtaining the distribution of $\sum_{j} B_{2 j}$ is straightforward

Generalized Pólya Urn Model

This theorem is shown by interpreting the game in terms of generalized Pólya urn model as follows:

- WLOG assume that pairs are collected in an increasing order (such games are called standard by Velleman and Warrington).
- When a new pair of cards is added to an existing game, the second element of a pair is put at the end of the row and the first is put somewhere before it.
- If it is put in the existing block of size i it reduces the number of such blocks by 1 , increases the number of blocks of length $i+1$ by 1 , and the card inserted at the end creates a block of size 1 .
- If both cards are placed at the end, this just creates one new block of size 2 (we need a model with immigration for that).

Generalized Pólya Urn Models

Theory of Pólya urn models is huge, in generality we need it was developed in

- S.Janson Functional limit theorems for multitype branching processes and generalized Pólya urns. Stochastic Processes and Applications (2004).
- L.-X. Zhang, F. Hu, S. H. Chung, W. S. Chan Immigrated urn models - theoretical properties and applications. Annals of Statistics (2011).

Connections to Preferential Attachment Graphs

- Earlier picture: game of memory

- Preferential attachment graphs via chord diagrams (Bollobás, Riordan, Spencer, and Tusnády (2001)):

Draw an edge between v_{i} and v_{j} iff there is a pair whose one element is in v_{i} and the other in v_{j}.

In the language of preferential attachment graphs our results about the joint distribution of the first few matches in the game recover results by Peköz, Röllin and Ross about the joint degree distribution of the first few vertices in the preferential attachment graphs

- E. Peköz, A. Röllin, N. Ross Degree asymptotics with rates for preferential attachment random graphs, Annals of Applied Probability (2013).
- E. Peköz, A. Röllin, N. Ross Joint degree distributions of preferential attachment random graphs, http://arxiv.org/pdf/1402.4686v1.pdf.
The length of the game gives the asymptotic joint normality of the counts of the degrees of vertices.

A recurrence for generating polynomials

If

$$
A_{n}(x)=\sum_{j=2}^{n+1} a_{n, j} x^{j}
$$

is the generating polynomial of the number of standard games with n pairs of cards with first match at j then one has

$$
A_{n}(x)=(2 n-1) A_{n-1}(x)+x(x-1) A_{n-1}^{\prime}(x)
$$

which is an example of a recurrence of the form

$$
P_{n}(x)=f_{n}(x) P_{n-1}(x)+g_{n}(x) P_{n-1}^{\prime}(x)
$$

for some fixed sequences of polynomials $\left(f_{n}\right),\left(g_{n}\right)$ with

$$
g_{n}(1)=0 .
$$

A few more examples

- H., Janson (2014): for $a, b>0$ (but could be complex)

$$
\begin{aligned}
& P_{n, a, b}(x)=((n-1+b) x+a) P_{n-1, a, b}(x)+x(1-x) P_{n-1, a, b}^{\prime}(x) \\
& P_{0, a, b}(x)=1
\end{aligned}
$$

- $b=0, a=1$ give classical Eulerian polynomials. That is:

$$
P_{n, 1,0}(x)=E_{n}(x)=\sum_{k=0}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle x^{k},
$$

where $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ is the number of permutations of [n] with exactly k ascents and the recurrence is:

$$
E_{n}(x)=((n-1) x+1) E_{n-1}(x)+x(1-x) E_{n-1}^{\prime}(x)
$$

A few more examples

- Aval, Boussicault, Nadeau (2011):

$$
\begin{aligned}
& B_{n}(x)=n x(x+1) B_{n-1}(x)+x\left(1-x^{2}\right) B_{n-1}^{\prime}(x) \\
& B_{0}(x)=x
\end{aligned}
$$

A few more examples

- Aval, Boussicault, Nadeau (2011):

$$
\begin{aligned}
& B_{n}(x)=n x(x+1) B_{n-1}(x)+x\left(1-x^{2}\right) B_{n-1}^{\prime}(x) \\
& B_{0}(x)=x
\end{aligned}
$$

Question: Can we describe the limits of sequences of random variables (X_{n}) described by

$$
\begin{aligned}
& \quad \frac{P_{n}(x)}{P_{n}(1)}=\sum_{k \geq 0} \frac{p_{n, k}}{P_{n}(1)} x^{k}=\mathbb{E} x^{x_{n}}, \quad p_{n, k} \geq 0, \\
& \text { i.e. } \quad \mathbb{P}\left(X_{n}=k\right)=\frac{p_{n, k}}{P_{n}(1)}=\frac{p_{n, k}}{\sum_{j} p_{n, j}}, \quad k \geq 0,
\end{aligned}
$$

by looking at the sequences $\left(f_{n}\right)$ and $\left(g_{n}\right)$?

Method of Moments

Often,

$$
X_{n} \xrightarrow{d} X, \quad \text { as } n \rightarrow \infty
$$

is implied by

$$
\mathbb{E}\left(X_{n}\right)_{r} \longrightarrow \mathbb{E}(X)_{r}, \quad r=1,2 \ldots
$$

where

$$
\mathbb{E}(X)_{r}:=\mathbb{E} X(X-1) \ldots(X-(r-1)) .
$$

In terms of polynomials

$$
\mathbb{E}\left(X_{n}\right)_{r}=\frac{P_{n}^{(r)}(1)}{P_{n}(1)}
$$

and so we are interested in limiting behavior of $P_{n}^{(r)}(1)$.

Method of Moments

Leibniz formula gives

$$
\begin{aligned}
P_{n}^{(r)}(x)= & \left(f_{n}(x) P_{n-1}(x)\right)^{(r)}+\left(g_{n}(x) P_{n-1}^{\prime}(x)\right)^{(r)} \\
& =\sum_{k=0}^{r}\binom{r}{k} f_{n}^{(k)}(x) P_{n-1}^{(r-k)}(x) \\
& +\sum_{k=0}^{r}\binom{r}{k} g_{n}^{(k)}(x) P_{n-1}^{(r+1-k)}(x) .
\end{aligned}
$$

So, if f_{n} and g_{n} are low-degree polynomials then one obtains a reasonably simple recurrence for $P_{n}^{(r)}(1)$.

V-W recurrence

In the case of $A_{n}(x), f_{n}=2 n-1$ has degree $0, g_{n}(x)=x(x-1)$ has degree 2 and we get, after evaluating at $x=1$,

$$
A_{n}(1)^{(r)}=: A_{n}^{(r)}=(2 n-1+r) A_{n-1}^{(r)}+r(r-1) A_{n-1}^{(r-1)} .
$$

In particular, if $r=0$ this is

$$
A_{n}=A_{n}^{(0)}=(2 n-1) A_{n-1}=\cdots=(2 n-1)!!,
$$

so that if $Q_{n}(x)=A_{n}(x) / A_{n}$ then

$$
Q_{n}^{(r)}=\left(1+\frac{r}{2 n-1}\right) Q_{n-1}^{(r)}+\frac{r(r-1)}{2 n-1} Q_{n-1}^{(r-1)}
$$

V-W recurrence

By induction $Q_{n}^{(r)}=0$ for $0 \leq n<r-1$ and for $n \geq r-1$

$$
Q_{n}^{(r)}=C_{r} \frac{\Gamma\left(n+\frac{r+1}{2}\right)}{\Gamma\left(n+\frac{1}{2}\right)} \sum_{1 \leq k_{1}<k_{2}<\cdots<k_{r-1} \leq n} \prod_{l=1}^{r-1} \frac{\Gamma\left(k_{l}+\frac{l-1}{2}\right)}{\Gamma\left(k_{l}+\frac{l+2}{2}\right)}
$$

with

$$
C_{1}=\sqrt{\pi}, \quad C_{r}=\binom{r}{2} C_{r-1}=\sqrt{\pi} \frac{\Gamma(r+1)(r-1)!}{2^{r-1}}, \quad r \geq 2 .
$$

The multiple sum can be evaluated:

$$
\sum_{1 \leq k_{1}<\cdots<k_{r-2}<k_{r-1}} \prod_{l=1}^{r-1} \frac{\Gamma\left(k_{l}+\frac{l-1}{2}\right)}{\Gamma\left(k_{l}+\frac{l+2}{2}\right)}=\frac{2^{r-1}}{(r-1)!\Gamma\left(\frac{r+1}{2}\right)} .
$$

V-W recurrence

This gives

$$
Q_{n}^{(r)} \sim \frac{\Gamma\left(n+\frac{r+1}{2}\right)}{\Gamma\left(n+\frac{1}{2}\right)} C_{r} \frac{2^{r-1}}{(r-1)!\Gamma\left(\frac{r+1}{2}\right)} \sim \sqrt{\pi} \frac{\Gamma(r+1)}{\Gamma\left(\frac{r+1}{2}\right)} n^{r / 2} .
$$

By the duplication formula for Gamma function:

$$
\frac{\Gamma(r+1)}{\Gamma\left(\frac{r+1}{2}\right)} \sqrt{\pi}=2^{r} \Gamma\left(1+\frac{r}{2}\right),
$$

and thus

$$
\frac{Q_{n}^{(r)}}{(2 \sqrt{n})^{r}} \sim \Gamma\left(1+\frac{r}{2}\right)
$$

which are the moments of the standard Rayleigh distribution.

Real-rootedness and convergence to normal

If all roots of P_{n} are real then

$$
\frac{P_{n}(x)}{P_{n}(1)}
$$

is a p.g.f. of a sum of independent indicators, so the asymptotic normality holds as long as variance of the sum goes to infinity (usually easy to check from the recurrence for $P_{n}(x)$).

Conditions for the real-rootedness

- L. L. Liu and Y. Wang (2007) consider

$$
P_{n}(x)=f_{n}(x) P_{n-1}(x)+g_{n}(x) P_{n-1}^{\prime}(x)+h_{n}(x) P_{n-2}(x)
$$

under extra assumptions (but not on the degrees f_{n}, g_{n}, and h_{n}). The minimum assumption is that

$$
g_{n}(x) \leq 0, \quad h_{n}(x) \leq 0 \quad \text { for } \quad x \leq 0
$$

- D. Dominici, K. Driver, K Jordaan (2011) consider

$$
P_{n}(x)=f_{n}(x) P_{n-1}(x)+g_{n}(x) P_{n-1}^{\prime}(x)
$$

where f_{n} 's have degrees at most 1 and g_{n} 's at most 2 .

A-B-N recurrence

Aval, Boussicault, Nadeau (2011) recurrence

$$
B_{n}(x)=n x(x+1) B_{n-1}(x)+x\left(1-x^{2}\right) B_{n-1}^{\prime}(x)
$$

does not fall in either of the cases:

- $x\left(1-x^{2}\right) \leq 0$ fails for $x \leq 0$ and
- Both $x(1+x)$ and $x\left(1-x^{2}\right)$ have too high degrees.

A-B-N recurrence

Aval, Boussicault, Nadeau (2011) recurrence

$$
B_{n}(x)=n x(x+1) B_{n-1}(x)+x\left(1-x^{2}\right) B_{n-1}^{\prime}(x)
$$

does not fall in either of the cases:

- $x\left(1-x^{2}\right) \leq 0$ fails for $x \leq 0$ and
- Both $x(1+x)$ and $x\left(1-x^{2}\right)$ have too high degrees.
- Their method can be adapted since all B_{n} 's have common roots at -1 and 0 (H. \& A. Lohss).
- Alternative approach (based on shifting the mean trick) has been developed by H.-K. Hwang and can be used to show asymptotic normality (but not real rootedness, of course).

A-B-N recurrence

Aval, Boussicault, Nadeau (2011) recurrence

$$
B_{n}(x)=n x(x+1) B_{n-1}(x)+x\left(1-x^{2}\right) B_{n-1}^{\prime}(x)
$$

does not fall in either of the cases:

- $x\left(1-x^{2}\right) \leq 0$ fails for $x \leq 0$ and
- Both $x(1+x)$ and $x\left(1-x^{2}\right)$ have too high degrees.
- Their method can be adapted since all B_{n} 's have common roots at -1 and 0 (H. \& A. Lohss).
- Alternative approach (based on shifting the mean trick) has been developed by H.-K. Hwang and can be used to show asymptotic normality (but not real rootedness, of course).
Thank you :-)

