Random \mathbb{Z}^d SFTs

Kevin McGoff

UNC Charlotte

October 25, 2016

joint work with Ronnie Pavlov

Random \mathbb{Z}^d SFTs

< ロ > < 同 > < 回 > < 回 >

The probability model

Recall:

- "dimension" *d* and "alphabet" *A* are fixed;
- for $n \in \mathbb{N}$ and $\alpha \in [0, 1]$,

 $\mathbb{P}_{n,\alpha}$ is a prob. meas. on the power set of $\mathcal{A}^{[1,n]^d}$;

• if $\mathcal{F} \subset \mathcal{A}^{[1,n]^d}$, then

$$\mathbb{P}_{n,\alpha}(\mathcal{F}) = \alpha^{|\mathcal{A}|^{n^d} - |\mathcal{F}|} (1 - \alpha)^{|\mathcal{F}|}.$$

• We study properties of random SFT $X(\mathcal{F})$ under $\mathbb{P}_{n,\alpha}$ as $n \to \infty$.

Finite orbits

• Let $\{\gamma_k\}_k$ be an enumeration of the finite orbits in $\mathcal{A}^{\mathbb{Z}^d}$.

● For *t* ∈ [0, 1], define

$$g(t)=\prod_k(1-t^{|\gamma_k|}).$$

- The coefficients of $g(t)^{-1}$ are related to counts of finite orbits (Artin-Mazur zeta function for d = 1).
- g(t) > 0 if and only if $t < |\mathcal{A}|^{-1}$.

Emptiness theorem

Theorem (M.-Pavlov) For $\alpha \in [0, 1]$, $\lim_{n} \mathbb{P}_{n,\alpha}(X(\mathcal{F}) = \emptyset) = g(\alpha)$. Moreover, for $\alpha \neq |\mathcal{A}|^{-1}$, there exists $\rho > 0$ such that for all large n,

$$\mathbb{P}_{\pmb{n},lpha}ig(\pmb{X}(\mathcal{F})=arnothingig)-\pmb{g}(lpha)ig|\leq \expig(-
ho\pmb{n}^{\pmb{d}}ig).$$

- Recall: $g(\alpha) > 0$ if and only if $\alpha < |\mathcal{A}|^{-1}$.
- Emptiness is undecidable, but its asymptotic probability is tractable.

Intuition behind $g(\alpha)$

For a finite orbit *γ* and all large *n*, there are |*γ*| patterns with shape [1, *n*]^d contained in *γ*.

• Thus,
$$\mathbb{P}_{n,\alpha}(\gamma \subset X(\mathcal{F})) = \alpha^{|\gamma|}$$
, and $\mathbb{P}_{n,\alpha}(\mathcal{F} \text{ forbids } \gamma) = 1 - \alpha^{|\gamma|}$.

So

$$g(\alpha) = \prod_{k} (1 - \alpha^{|\gamma_k|})$$

looks like the probability of independently forbidding all finite orbits.

4 3 5 4 3 5

The intuition is not the proof

For the proof, we find $K_1 = K_1(n) \rightarrow \infty$, $K_2 = K_2(n) \rightarrow \infty$, and $C_n \rightarrow 1$ such that

$$\mathcal{C}_n \prod_{k \leq K_1} (1 - \alpha^{|\gamma_k|}) \leq \mathbb{P}_{n,\alpha} \big(X(\mathcal{F}) = \varnothing \big) \leq \prod_{k \leq K_2} (1 - \alpha^{|\gamma_k|}).$$

- Difficulties:
 - finite orbits with "large period" relative to n;
 - finite orbits are not all independent;
 - emptiness is not equivalent to "no finite orbits" for d > 1;
- Most difficult part of our proof: show that $C_n \rightarrow 1$.
- Main technical tool: tight control on the number of large patterns with exactly *j* subpatterns of shape [1, n]^d.

A D N A D N A D N A D N

Probability of aperiodic SFTs

Theorem (M.-Pavlov)

For each *n*, let \mathcal{G}_n be the event that $X(\mathcal{F})$ is non-empty but contains no finite orbits. Then for $\alpha \in [0, 1]$,

$$\lim_{n} \mathbb{P}_{n,\alpha}(\mathcal{G}_n) = \mathbf{0}.$$

Moreover, for $\alpha \neq |\mathcal{A}|^{-1}$, the convergence rate is at least $\exp(-\rho n^d)$.

"Worst-case" behavior for d > 1 has asymptotically zero probability.

Entropy theorem

Theorem (M.-Pavlov)

Let $\alpha \in [0, 1]$ and $\epsilon > 0$. Then there exists $\rho > 0$ such that for all large enough *n*,

$$\mathbb{P}_{n,\alpha}\left(\left|h(X(\mathcal{F})) - \log^+(\alpha|\mathcal{A}|)\right| \ge \epsilon\right) \le \exp(-\rho n^d).$$

Entropy converges in probability to a point mass at $\log^+(\alpha |\mathcal{A}|)$.

< ロ > < 同 > < 回 > < 回 >

Intuition about $\log^+(\alpha |\mathcal{A}|)$

Imagine trying to extend a pattern by filling one additional site.

- How many choices to fill the site? |A|.
- Each choice is allowed with probability α .
- Looks like a branching process with "offspring distribution" given by Bin(|A|, α), which has expectation α|A|.

This approximation holds until one of the "children" has appeared before (loss of independence).

イロト イポト イラト イラト

Basic outline of the proof

For k > n, let

$$\varphi_{n,k} = \sum_{u \in L_k} \xi_u \quad (\text{number of allowed words on } [1, k]^d)$$
$$\psi_{n,k} = \sum_{u \in P_{n,k}} \xi_u \quad (\text{number of allowed "periodic" words on } [1, k]^d).$$

Here ξ_u is the characteristic function of the event that *u* contains no words from \mathcal{F} .

• Upper bound: $h(X(\mathcal{F})) \leq \frac{1}{k^d} \log \varphi_{n,k}$.

• Lower bound:
$$\frac{1}{k^{\sigma}} \log \psi_{n,k} - r_{n,k} \leq h(X(\mathcal{F})).$$

• Choose k = k(n) to control estimates on $\varphi_{n,k}$, $\psi_{n,k}$ and $r_{n,k}$.

Ideas in the proof: upper bound

• For
$$u \in L_k$$
, let $W_n(u) = \{ u|_{p+[1,n]^d} : p+[1,n]^d \subset [1,k]^d \}.$

• Then the probability that *u* contains no pattern from \mathcal{F} is $\alpha^{|W_n(u)|}$.

Hence

$$\mathbb{E}_{n,\alpha}[\varphi_{n,k}] = \sum_{u \in L_k} \mathbb{E}_{n,\alpha}[\xi_u] = \sum_{u \in L_k} \alpha^{|W_n(u)|} = \sum_{j=1}^{(k-n+1)^d} \alpha^j N_{n,k}^j.$$

Show that variance of *φ_{n,k}* is small compared to its expectation squared, and use Chebychev's inequality.

Ideas in the proof: lower bound

- Let $p_{n,k}$ be the number of periodic frames of length *k* and thickness *n*.
- Then there exists at least one periodic frame such that the number of ways it may be legally filled is at least

$$\frac{1}{\rho_{n,k}}\sum_{u\in P_{n,k}}\xi_u=\frac{1}{\rho_{n,k}}\psi_{n,k}.$$

• Hence
$$h(X(\mathcal{F})) \geq \frac{1}{k^d} \log \psi_{n,k} - \frac{\log(p_{n,k})}{k^d}$$
.

• Use second moment method on $\psi_{n,k}$.

Periodic entropy

Let *X* be a SFT, and let X_{per} be the set of points with finite orbit in *X*. Define

$$h_{per}(X) = \lim_k rac{1}{k^d} \log \# \{ x|_{[1,k]^d} : x \in X_{per} \}.$$

Theorem (M.-Pavlov)

I

Let $\alpha \in [0, 1]$ and $\epsilon > 0$. Then there exist $\rho > 0$ such that for all large enough *n*,

$$\mathbb{P}_{n,\alpha}\left(\left|h_{per}(\boldsymbol{X}(\mathcal{F})) - \log^{+}(\alpha|\mathcal{A}|)\right| \geq \epsilon\right) \leq \exp(-\rho n^{d}).$$

★ ∃ > < ∃ >

Conclusions

- From the point of view of emptiness, periodic points, and entropy, it appears that "typical" Z^d SFTs behave as well as Z SFTs.
- It seems that even the Swamp of Undecidability is "typically" a pleasant place.

Acknowledgments

- KM acknowledges the support of NSF DMS 1613261.
- RP acknowledges the support of NSF DMS 1500685.