Random \mathbb{Z}^{d} SFTs

Kevin McGoff

UNC Charlotte

October 25, 2016

joint work with Ronnie Pavlov

The probability model

Recall:

- "dimension" d and "alphabet" \mathcal{A} are fixed;
- for $n \in \mathbb{N}$ and $\alpha \in[0,1]$,

$$
\mathbb{P}_{n, \alpha} \text { is a prob. meas. on the power set of } \mathcal{A}^{[1, n]^{d}}
$$

- if $\mathcal{F} \subset \mathcal{A}^{[1, n]^{d}}$, then

$$
\mathbb{P}_{n, \alpha}(\mathcal{F})=\alpha^{|\mathcal{A}|^{n^{d}}-|\mathcal{F}|}(1-\alpha)^{|\mathcal{F}|} .
$$

- We study properties of random SFT $X(\mathcal{F})$ under $\mathbb{P}_{n, \alpha}$ as $n \rightarrow \infty$.

Finite orbits

- Let $\left\{\gamma_{k}\right\}_{k}$ be an enumeration of the finite orbits in $\mathcal{A}^{\mathbb{Z}^{d}}$.
- For $t \in[0,1]$, define

$$
g(t)=\prod_{k}\left(1-t^{\left|\gamma_{k}\right|}\right)
$$

- The coefficients of $g(t)^{-1}$ are related to counts of finite orbits (Artin-Mazur zeta function for $d=1$).
- $g(t)>0$ if and only if $t<|\mathcal{A}|^{-1}$.

Emptiness theorem

Theorem (M.-Pavlov)
For $\alpha \in[0,1]$,

$$
\lim _{n} \mathbb{P}_{n, \alpha}(X(\mathcal{F})=\varnothing)=g(\alpha) .
$$

Moreover, for $\alpha \neq|\mathcal{A}|^{-1}$, there exists $\rho>0$ such that for all large n,

$$
\left|\mathbb{P}_{n, \alpha}(X(\mathcal{F})=\varnothing)-g(\alpha)\right| \leq \exp \left(-\rho n^{d}\right) .
$$

- Recall: $g(\alpha)>0$ if and only if $\alpha<|\mathcal{A}|^{-1}$.
- Emptiness is undecidable, but its asymptotic probability is tractable.

Intuition behind $g(\alpha)$

- For a finite orbit γ and all large n, there are $|\gamma|$ patterns with shape $[1, n]^{d}$ contained in γ.
- Thus, $\mathbb{P}_{n, \alpha}(\gamma \subset X(\mathcal{F}))=\alpha^{|\gamma|}$, and $\mathbb{P}_{n, \alpha}(\mathcal{F}$ forbids $\gamma)=1-\alpha^{|\gamma|}$.
- So

$$
g(\alpha)=\prod_{k}\left(1-\alpha^{\left|\gamma_{k}\right|}\right)
$$

looks like the probability of independently forbidding all finite orbits.

The intuition is not the proof

For the proof, we find $K_{1}=K_{1}(n) \rightarrow \infty, K_{2}=K_{2}(n) \rightarrow \infty$, and $C_{n} \rightarrow 1$ such that

$$
C_{n} \prod_{k \leq K_{1}}\left(1-\alpha^{\left|\gamma_{k}\right|}\right) \leq \mathbb{P}_{n, \alpha}(X(\mathcal{F})=\varnothing) \leq \prod_{k \leq K_{2}}\left(1-\alpha^{\left|\gamma_{k}\right|}\right)
$$

- Difficulties:
- finite orbits with "large period" relative to n;
- finite orbits are not all independent;
- emptiness is not equivalent to "no finite orbits" for $d>1$;
- Most difficult part of our proof: show that $C_{n} \rightarrow 1$.
- Main technical tool: tight control on the number of large patterns with exactly j subpatterns of shape $[1, n]^{d}$.

Probability of aperiodic SFTs

Theorem (M.-Pavlov)

For each n, let \mathcal{G}_{n} be the event that $X(\mathcal{F})$ is non-empty but contains no finite orbits. Then for $\alpha \in[0,1]$,

$$
\lim _{n} \mathbb{P}_{n, \alpha}\left(\mathcal{G}_{n}\right)=0 .
$$

Moreover, for $\alpha \neq|\mathcal{A}|^{-1}$, the convergence rate is at least $\exp \left(-\rho n^{d}\right)$.
"Worst-case" behavior for $d>1$ has asymptotically zero probability.

Entropy theorem

Theorem (M.-Pavlov)
Let $\alpha \in[0,1]$ and $\epsilon>0$. Then there exists $\rho>0$ such that for all large enough n,

$$
\mathbb{P}_{n, \alpha}\left(\left|h(X(\mathcal{F}))-\log ^{+}(\alpha|\mathcal{A}|)\right| \geq \epsilon\right) \leq \exp \left(-\rho n^{d}\right)
$$

Entropy converges in probability to a point mass at $\log ^{+}(\alpha|\mathcal{A}|)$.

Intuition about $\log ^{+}(\alpha|\mathcal{A}|)$

Imagine trying to extend a pattern by filling one additional site.

- How many choices to fill the site? $|\mathcal{A}|$.
- Each choice is allowed with probability α.
- Looks like a branching process with "offspring distribution" given by $\operatorname{Bin}(|\mathcal{A}|, \alpha)$, which has expectation $\alpha|\mathcal{A}|$.

This approximation holds until one of the "children" has appeared before (loss of independence).

Basic outline of the proof

For $k>n$, let

$$
\begin{aligned}
& \varphi_{n, k}=\sum_{u \in L_{k}} \xi_{u} \quad \text { (number of allowed words on }[1, k]^{d} \text {) } \\
& \left.\psi_{n, k}=\sum_{u \in P_{n, k}} \xi_{u} \quad \text { (number of allowed "periodic" words on }[1, k]^{d}\right) .
\end{aligned}
$$

Here ξ_{u} is the characteristic function of the event that u contains no words from \mathcal{F}.

- Upper bound: $h(X(\mathcal{F})) \leq \frac{1}{k^{a}} \log \varphi_{n, k}$.
- Lower bound: $\frac{1}{k^{d}} \log \psi_{n, k}-r_{n, k} \leq h(X(\mathcal{F}))$.
- Choose $k=k(n)$ to control estimates on $\varphi_{n, k}, \psi_{n, k}$ and $r_{n, k}$.

Ideas in the proof: upper bound

- For $u \in L_{k}$, let $W_{n}(u)=\left\{\left.u\right|_{p+[1, n]^{d}}: p+[1, n]^{d} \subset[1, k]^{d}\right\}$.
- Then the probability that u contains no pattern from \mathcal{F} is $\alpha^{\left|W_{n}(u)\right|}$.
- Hence

$$
\mathbb{E}_{n, \alpha}\left[\varphi_{n, k}\right]=\sum_{u \in L_{k}} \mathbb{E}_{n, \alpha}\left[\xi_{u}\right]=\sum_{u \in L_{k}} \alpha^{\left|W_{n}(u)\right|}=\sum_{j=1}^{(k-n+1)^{d}} \alpha^{j} N_{n, k}^{j}
$$

- Show that variance of $\varphi_{n, k}$ is small compared to its expectation squared, and use Chebychev's inequality.

Ideas in the proof: lower bound

- Let $p_{n, k}$ be the number of periodic frames of length k and thickness n.
- Then there exists at least one periodic frame such that the number of ways it may be legally filled is at least

$$
\frac{1}{p_{n, k}} \sum_{u \in P_{n, k}} \xi_{u}=\frac{1}{p_{n, k}} \psi_{n, k}
$$

- Hence $h(X(\mathcal{F})) \geq \frac{1}{k^{d}} \log \psi_{n, k}-\frac{\log \left(p_{n, k}\right)}{k^{d}}$.
- Use second moment method on $\psi_{n, k}$.

Periodic entropy

Let X be a SFT, and let $X_{\text {per }}$ be the set of points with finite orbit in X. Define

$$
h_{\text {per }}(X)=\lim _{k} \frac{1}{k^{d}} \log \#\left\{\left.x\right|_{[1, k]^{d}}: x \in X_{\text {per }}\right\} .
$$

Theorem (M.-Pavlov)
Let $\alpha \in[0,1]$ and $\epsilon>0$. Then there exist $\rho>0$ such that for all large enough n,

$$
\mathbb{P}_{n, \alpha}\left(\left|h_{p e r}(X(\mathcal{F}))-\log ^{+}(\alpha|\mathcal{A}|)\right| \geq \epsilon\right) \leq \exp \left(-\rho n^{d}\right) .
$$

Conclusions

- From the point of view of emptiness, periodic points, and entropy, it appears that "typical" \mathbb{Z}^{d} SFTs behave as well as \mathbb{Z} SFTs.
- It seems that even the Swamp of Undecidability is "typically" a pleasant place.

Acknowledgments

- KM acknowledges the support of NSF DMS 1613261.
- RP acknowledges the support of NSF DMS 1500685.

