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e(P) number of linear extensions of P
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e(Bn) known up to n = 6: 1, 2, 48, 1680384, . . .
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Theorem (Brightwell, Winkler 1991)

For general posets P, counting e(P) is #P -complete.

• find bounds for e(P)

• study families of posets P where e(P) is computable



General bounds
general bounds: (folklore)

e(P) ≤ n!

48 ≤ 8!



General bounds
general bounds: (folklore)

r1! · · · r`! ≤ e(P) ≤
n!

c1! · · · cm!

` length of longest chain, m length longest antichain
ri elements rank i,
C1, . . . , Cm decomposition of P into chains, ci = |Ci|



General bounds
general bounds: (folklore)

r1! · · · r`! ≤ e(P) ≤
n!

c1! · · · cm!

` length of longest chain, m length longest antichain
ri elements rank i,
C1, . . . , Cm decomposition of P into chains, ci = |Ci|

` = 4
m = 3



General bounds
general bounds: (folklore)

r1! · · · r`! ≤ e(P) ≤
n!

c1! · · · cm!

` length of longest chain, m length longest antichain
ri elements rank i,
C1, . . . , Cm decomposition of P into chains, ci = |Ci|

` = 4
m = 3

36 = 1!3!3!1! ≤ 48 ≤ 8!

4!2!2!
= 420
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Posets from Young diagrams of partitions
λ: partition (straight) shape

λ/µ: skew shape

(4, 3, 2)

(4, 3, 2)/(2, 1)
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Linear extensions: standard Young tableaux
λ: straight shape

View linear extension in the poset of a Young diagram as a
filling with 1, 2, . . . , n increasing in rows and columns.

<

<<

1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 5
2 4

1 3 4
2 5

Such fillings are called Standard Young tableaux (SYT)
Let fλ := e(λ)



Standard Young tableaux skew shape
λ/µ: skew shape

<
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1 2
3 4

1 3
2 4

1 4
2 3

2 4
1 3

2 3
1 4

Let fλ/µ := e(λ/µ)



number of SYT of straight shape
Example: hooks



number of SYT of straight shape
Example: hooks

1

f (6,1,1,1) =

(
8

3

)



number of SYT of straight shape
Example: hooks

1

f (6,1,1,1) =

(
8

3

)

f (p,1
q) =

(
p+ q − 1

q

)
q

p
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number of SYT of 2× n rectangle
Example: 2× n rectangle

1 2
3 4

1 3
2 4

1 2 3
4 5 6

1 2
3 5 6

1 2 5
63 4

4 1 3 4
2 5 6

1 3 5
62 4

n

f (n,n) =
1

n+ 1

(
2n

n

)
f (4,4) = 14
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Hook-length formula

fλ = n!
∏

(i,j)∈λ

1

h(i, j)
,

Theorem (Frame-Robinson-Thrall 1954)

h(i, j) = λi − i+ λ′j − j + 1 is the hook-length of (i, j)

Example

1
4
2

3
f =

5!

12 · 2 · 3 · 4
= 5

• bijective proof by Novelli-Pak-Stoyanovskii 97.

• probabilistic proof by Greene-Nijenhuis-Wilf 79.
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Outline

• fλ =
|λ|!∏

u∈λ h(u)
• asymptotics

• fλ/µ =?
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No product formula for fλ/µ

Example: zigzag strip z(n)

λ/µ :

fλ/µ : 2 5 16 61 272 . . .

Euler numbers En

E2n+1 = fz(n)

Recall

1 + E1x+ E2
x2

2!
+ E3

x3

3!
+ E4

x4

4!
+ . . . = sec(x) + tan(x).

∼ 2n+2n!

πn+1
(1 + o(1)).
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More about Euler numbers

En · Fn ≥ n!

2 5 16 61 272 . . .

En

Fn+1

1

2 3 8 13 215

Fact

• note that φ > π/2

• inequality comes from bound for e(P) of Sidorenko for
zigzag poset.

1 1
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Alternating formulas for fλ/µ

fλ/µ = |λ/µ|! · det
[

1

(λi − µj − i+ j)!

]`(λ)
i,j=1

.

Jacobi-Trudi identity (Feit 1953)

Example

f = 4! · det

[
1
2!

1
4!

1
1!

1
2!

]

= 4! ·
(
1

4
− 1

24

)
= 5.



Positive formulas for fλ/µ

fλ/µ =
∑
ν

cλµ,νf
ν ,

Littlewood-Richardson rule

where cλµ,ν are the Littlewood-Richardson coefficients.



Naruse’s "hook-length" formula for fλ/µ

fλ/µ = n!
∑

D∈E(λ/µ)

∏
(i,j)∈λ\D

1

h(i, j)
,

Theorem (Naruse 2014)

where E(λ/µ) is the set of excited diagrams of λ/µ.
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Proposition |E(z(n)| = 1
n+1

(
2n
n

)
.
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fλ/µ = n!
∑

D∈E(λ/µ)

∏
(i,j)∈λ\D

1

h(i, j)
,

Theorem (Naruse 2014)

where E(λ/µ) is the set of excited diagrams of λ/µ.

Example

f = 3! ·
(

1

1 · 2 · 2
+

1

2 · 2 · 3

)
E( ) =

{ }
, 1

3
2
2

= 3!

(
1

4
+

1

12

)
= 2.

• we have two q-analogues and a combinatorial proof (M,
Pak, Panova, 2015,2016)

• Konvalinka (2016+) announced a probabilistic proof
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• fλ =
n!∏

u∈λ h(u)
• asymptotics

• fλ/µ = n!
∑

D∈E(λ/µ)

· · ·

• asymptotics?
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Some known bounds

Related work by Corteel-Goupil-Schaeffer 2004

• Thoma-Verskhi-Kerov limit: let λn → (α | β) in
Frobenius coordinates,

fλ
n/µ = fλ

n

sα(α/− β)(1 +O(1/n))

Stanley 1993

Okounkov-Olshanski have explicit formulas for fλ/µ/fλ.

a1a2a3b1b2b3
ai/n→ β1 bi/n→ βi

fix µ



Main bound from Naruse’s formula

Let the naive hook-length formula

F (λ/µ) :=
n!∏

(i,j)∈λ/µ h(i, j)

fλ/µ = n!
∑

D∈E(λ/µ)

∏
(i,j)∈λ\D

1

h(i, j)
,

F (λ/µ) ≤ fλ/µ ≤ |E(λ/µ)| · F (λ/µ)
Corollary

Proof

UB: The diagram that contributes the most is D = µ.

1
1

1
1
3
3
35

5
7

LB: µ is an excited diagram
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Bounds for number of excited diagrams

|E(λ/µ)| ≤ 2n

F (λ/µ) ≤ fλ/µ ≤ |E(λ/µ)| · F (λ/µ)

Proof:
Excited diagrams correspond to certain non-intersecting paths
in λ (Kreiman)

Each path determined by steps or



Bounds for number of excited diagrams

|E(λ/µ)| ≤ 2n

F (λ/µ) ≤ fλ/µ ≤ |E(λ/µ)| · F (λ/µ)

|E(λ/µ)| ≤ n2d
2

where d size Durfee square of λ

in some special cases F (λ/µ) dwarfs |E(λ/µ)|
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n!

c1! · · · cm!

general poset bound:
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Comparing bounds

F (λ/µ) ≤ fλ/µ ≤ |E(λ/µ)| · F (λ/µ)

r1! · · · r`! ≤ fλ/µ ≤
n!

c1! · · · cm!

general poset bound:

1
1
1

3
3
2

2
4

4
5

864 = 3!4!3! ≤ fλ/µ ≤ 10!
3!3!3!1! = 16800

1260 = 10!
5423222 ≤ f

λ/µ ≤ 5 · 1260 = 6300



Main application:
Let be shape (2k − 1, 2k − 2, . . . , 1)/(k − 1, k − 2, . . . , 1)

k

4

Theorem (M., Pak, Panova 16)

−0.3237 ≤ 1

n

(
log f − 1

2
n log n

)
≤ −0.0621k

n = k(3k − 1)/2

Compare with general bound for e(P):

−0.7785 ≤ 1

n

(
log f − 1

2
n log n

)
≤ 0.3694k



Why bound from Naruse’s formula is good for
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Why bound from Naruse’s formula is good for

F (λ/µ) ≤ fλ/µ ≤ |E(λ/µ)| · F (λ/µ)

4

k

• F ( ) =
n!∏

u∈ h(u)
ratio of easy hooks

k

k



Why bound from Naruse’s formula is good for
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F (λ/µ) ≤ fλ/µ ≤ |E(λ/µ)| · F (λ/µ)

• For this shape there is a product formula for |E( )|

|E( )| =
∏

1≤i<j≤k

k + i+ j − 1

i+ j − 1k

4

k

Lemma (Proctor 1990)
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ratio of easy hooks
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Why bound from Naruse’s formula is good for

k

F (λ/µ) ≤ fλ/µ ≤ |E(λ/µ)| · F (λ/µ)

• For this shape there is a product formula for |E( )|

|E( )| =
∏

1≤i<j≤k

k + i+ j − 1

i+ j − 1k

4

k

Lemma (Proctor 1990)

• F ( ) =
n!∏

u∈ h(u)
ratio of easy hooks

k

k

• express bounds in terms of (double) factorials and use
Stirling’s formula



Summary

F (λ/µ) ≤ fλ/µ ≤ |E(λ/µ)| · F (λ/µ)

• bounds from Naruse’s formula

• thick zigzags: f ≈
√
n! get good bounds for second

asymptotic term
k



Summary

F (λ/µ) ≤ fλ/µ ≤ |E(λ/µ)| · F (λ/µ)

• bounds from Naruse’s formula

• thick zigzags: f ≈
√
n! get good bounds for second

asymptotic term
k

• λ, µ have Thoma-Vershik-Kerov limit, fλ/µ has exponential
growth

• other shapes where row/col lengths grow like
√
n then

fλ/µ ≈
√
n!



Thank you!

• Hook formulas for skew shapes I and II, M., I. Pak, G.
Panova, arxiv:1512:08348, arxiv:1610.04744

Some references

• Schubert calculus and hook formula, H. Naruse, slides
Séminaire Lotharingien de Combinatoire 73, Strobl,
Austria, 2014

• Asymptotics for the number of standard Young
tableaux of skew shape, M., I. Pak, G. Panova,
arxiv:1610.07561

• Increasing and decreasing subsequences and their
variants, R.P. Stanley, Proc. ICM, Vol I, 545-579



Theorem (Brightwell, Tetali 2003)
log2(e(Bn))

2n = log2
(

n
bn/2c

)
− 3

2 log2(e) + o(1)


