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Linear extensions of posets

P be a ranked poset with n elements,

a linear extension is a linear order or permutation of the
elements compatible with the order of P.

. inear extensions

e(P) number of linear extensions of P
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Complexity of counting linear extensions

‘Theorem (Brightwell, Winkler 1991)

For general posets P, counting e(P) is #P-complete.

\.

e study families of posets P where ¢(P) is computable

e find bounds for e(P)
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General bounds

general bounds: (folklore)

ril--orpl <e(P) <

Cl!“'Cm!

¢ length of longest chain, m length longest antichain
r; elements rank 1,

C4,...,C,, decomposition of P into chains, ¢; = |C;]
(=4
m =3
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Posets from Young diagrams of partitions
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A: partition (straight) shape

(4,3,2)

A/ p: skew shape

H Y A

(4,3,2)/(2,1)
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Linear extensions: standard Young tableaux

A: straight shape
<

A\

<>/

View linear extension in the poset of a Young diagram as a

filling with 1,2,...,n increasing in rows and columns.
1(2]3 1(2|4 1{2]5
415 3|5 3|4
1{3]5 1(3|4
214 2|5

Such fillings are callea

Let A := e(\)

Standard Young tableaux (SYT)



Standard Young tableaux skew shape

A/ p: skew shape
<

= A
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314

214
113

Let fAH :=e(\/p)
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Example: hooks

of straight shape

f(6,1,1,1) _ (

f(p,lq) _ (p -+ q — 1

8
3
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Example: 2 X n rectangle
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number of SYT of 2 x n rectangle

Example: 2 X n rectangle

1]2 13
314 214
1123 11214 11215 1134 3

W~ [ QO

FEY =14

1 2n
-------- (n,m) _
........ ! n+1<n>
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Hook-length formula

(Theorem (Frame-Robinson-Thrall 1954)

1
=t 1] 7
isex i)
\h(z’,j) = A —i+ A, — j + 1 is the hook-length of (i, j)
Example
4131 - 5' — 5
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Hook-length formula

(Theorem (Frame-Robinson-Thrall 1954)
1
fA =nl —,
Ll h(i, j)

(4,7)EA
\h(z’,j) = A —i+ A, — j + 1 is the hook-length of (i, j)

Example

D

41371 L 5! _
: 12.2.3-4

—_
~=

e probabilistic proof by Greene-Nijenhuis-Wilf 79.

e bijective proof by Novelli-Pak-Stoyanovskii 97.
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No product formula for f**#

Example: zigzag strip z(n)

TR H [] ﬂ:l EFI

A2 5 16 61 272
2n2p|
Euler numbers E, i (1+0(1))
Eopy1 = f*0)
Recall , ; )
1+ Fhox ng ng E4x ... =sec(x) + tan(x).

3! 4]



More about Euler numbers
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More about Euler numbers

2 5 16 61

D 8 13

E, - F, >n!

272
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More about Euler numbers

Ey,
1 2 5 16 61 272
Fn—|—1
1 1 2 3 5) 8 13 21
Fact
E, - F, >n!

e note that ¢ > 7 /2

e inequality comes from bound for e(P) of Sidorenko for
zigzag poset.
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Jacobi-Trudi identity (Feit 1953)
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Alternating formulas for f/*#

Jacobi-Trudi identity (Feit 1953)

1 2(N)

(Ai —p; —i+7)! i1 '

FME =N/ p|!- det

\

Example

fBE:I: 4! . det




Positive formulas for f/#

Littlewood-Richardson rule

A hY v
f —E c
povd
14

A are the Littlewood-Richardson coefficients.

8%

\where C




Naruse's "hook-length" formula for f2/#

(Theorem (Naruse 2014)

1
fA/M —n Z H h(i,j)

De&A/u) (4,5) €MD

\where E(A/) is the set of excited diagrams of \/p.
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Excited diagrams of A/u

Let S C ),
A cell (¢,7) € S is excited if

(i +1,5), (i, 4 +1), (i +1,5+1) € A\ S.

J
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replace (¢,7) in S by (¢ 4+ 1,7+ 1)

HH —

§s



Excited diagrams of A\/u (cont.)

An excited move on an excited cell (i,7) in .S C A:
replace (¢,7) in Sby (i + 1,5+ 1)

HH — [




Excited diagrams of A\/u (cont.)

An excited move on an excited cell (i,7) in .S C A:
replace (¢,7) in Sby (i + 1,5+ 1)

HH — [

‘Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)\

Excited diagrams £(\/u): diagrams obtained from u by

applying iteratively excited moves on excited cells.
\ J
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Excited diagrams of A\/u (cont.)
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\where E(A/) is the set of excited diagrams of \/p.
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Naruse's "hook-length" formula for f*/#

(Theorem (Naruse 2014)

1
fA/M —n Z H h(i,j)
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\where E(A/) is the set of excited diagrams of \/p.

Example
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e we have two ¢-analogues and a combinatorial proof (M,
Pak, Panova, 2015,2016)
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Naruse's "hook-length" formula for f*/#

(Theorem (Naruse 2014)

1
fA/M —n Z H h(i,j)

De&A/u) (4,5) €MD

\where E(A/) is the set of excited diagrams of \/p.

Example

«E)={ 8 . B }

=n 1 1 11
=3l | =3![-+—=]=2
/ 1-2.2  2.2.3 TRRT

e we have two ¢-analogues and a combinatorial proof (M,
Pak, Panova, 2015,2016)

e Konvalinka (2016+) announced a probabilistic proof

DO Lo
el |\
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Some known bounds

e Thoma-Verskhi-Kerov limit: let A™ — (a | 8) in

Frobenius coordinates,
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Some known bounds

e Thoma-Verskhi-Kerov limit: let A™ — (a | 8) in

Frobenius coordinates,
U7 |

N

]lbDbg

a;/n— 1 bi/n— B

fix u

(Stanley 1993
P P s] = B)(1+ O(1/n)

\.

Okounkov-Olshanski have explicit formulas for f*/#/ f*.

Related work by Corteel-Goupil-Schaeffer 2004



Main bound from Naruse's formula

\

fA/M = n! Z H h(z’l 7

De&(A/p) (4,5) €MD

Let the naive hook-length formula

|
PO B n!
A1) [ yensn M@, 9)
(Corollary
F(Mp) < A7 <|EN )| - F(A/ p)
Proof

LB: 1 is an excited diagram

UB: The diagram that contributes the most is D = u.

el [O8

— Ot

— (ol




Bounds for number of excited diagrams

F(\/p) < fMYH<|EN )| - F(N )

EN/p)] <27




Bounds for number of excited diagrams

r

F(\/p) < fMYH<|EN )| - F(N )

.

7

EN/p)] <27

.

Proof:
Excited diagrams correspond to certain non-intersecting paths

in A (Kreiman) | rlf}?h' 1—'?“
) ]
| 1_,?| ﬁl

e
=i




Bounds for number of excited diagrams

r

F(\/p) < fMYH<|EN )| - F(N )

.

7

EN/p)] <27

.

Proof:
Excited diagrams correspond to certain non-intersecting paths

in A (Kreiman) rlj}“' r':[:_l 1—'?3“
] &)
o

Each path determined by stepsm or E




Bounds for number of excited diagrams

F(\/p) < fMYH<|EN )| - F(N )

EN/p)] <27

EN/p)| < 0"
where d size Durfee square of A

\.

in some special cases F'(\/u) dwarfs |E(A\/ )



Comparing bounds

general poset bound:

[ rl'fre'éf)‘/lué

[ F(\p) < /0 < 18O - FM )
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general poset bound:
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Comparing bounds

general poset bound:

[ .

..

gl < fMH<

864 = 314131 < fMr < A0 = 16800

[ P < £ < Em)] - FO
| P
53T
4l o] 1
2| 1
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Main application:

Let // be shape (2k — 1,2k —2,...,1)/(k -1,k —2,...

i

n==k(3k—-1)/2 u

(Theorem (M., Pak, Panova 16)

1 1
—0.3237 < — (log f%— §nlog n) < —0.0621
X n

Compare with general bound for e(P):

1 1
—0.7785 < — <logf Vk— §nlog n) < 0.3694
n
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e For this shape there is a product formula for |&( Vk )|
Lemma (Proctor 1990)
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k
e For this shape there is a product formula for |&( Vk )|
Lemma (Proctor 1990)
B k+i+j—1
1<i<3<k

e express bounds in terms of (double) factorials and use
Stirling’s formula

ratio of easy hooks
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Summary
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o thick zigzags: f Vk ~ v/n! get good bounds for second
asymptotic term



Summary

bounds from Naruse's formula

F(\/p) < fMYH<|EN )| - F(N 1)

thick zigzags: f Vk ~ v/n! get good bounds for second
asymptotic term

other shapes where row/col lengths grow like 1/n then

f)\/,u ~ m

A, 1 have Thoma-Vershik-Kerov limit, f*/# has exponential
growth
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‘Theorem (Brightwell, Tetali 2003)

log, (e(Bn o n
5 (2,5 ) — log, (Ln/ZJ) — 2log,(€) + o(1)




