Asymptotics for the number of standard Young tableaux of skew shape

•

 \mathcal{P} be a ranked poset with n elements, a **linear extension** is a linear order or permutation of the elements compatible with the order of \mathcal{P} .

 \mathcal{P} be a ranked poset with n elements, a **linear extension** is a linear order or permutation of the elements compatible with the order of \mathcal{P} .

 \mathcal{P} be a ranked poset with n elements, a **linear extension** is a linear order or permutation of the elements compatible with the order of \mathcal{P} .

Linear extensions

 \mathcal{P} be a ranked poset with n elements, a **linear extension** is a linear order or permutation of the elements compatible with the order of \mathcal{P} .

Linear extensions

 \mathcal{P} be a ranked poset with n elements, a **linear extension** is a linear order or permutation of the elements compatible with the order of \mathcal{P} .

Linear extensions

 $e(\mathcal{P})$ number of linear extensions of \mathcal{P}

Complexity of counting linear extensions $\mathcal{P} = B_n$ boolean lattice $\{1, 2\}$

Complexity of counting linear extensions $\mathcal{P} = B_n$ boolean lattice $\{1, 2\}$ $\{1\}$ $\{2\}$ \dots \dots

 $e(B_n)$ known up to n = 6: 1, 2, 48, 1680384, ...

Complexity of counting linear extensions

Theorem (Brightwell, Winkler 1991)

For general posets \mathcal{P} , counting $e(\mathcal{P})$ is #P-complete.

Complexity of counting linear extensions

Theorem (Brightwell, Winkler 1991)

For general posets \mathcal{P} , counting $e(\mathcal{P})$ is #P-complete.

- study families of posets $\mathcal P$ where $e(\mathcal P)$ is computable

Complexity of counting linear extensions

Theorem (Brightwell, Winkler 1991)

For general posets \mathcal{P} , counting $e(\mathcal{P})$ is #P-complete.

- study families of posets ${\mathcal P}$ where $e({\mathcal P})$ is computable
- find bounds for $e(\mathcal{P})$

general bounds: (folklore)

 $e(\mathcal{P}) \le n!$

 $48 \le 8!$

general bounds: (folklore)

$$r_1! \cdots r_\ell! \le e(\mathcal{P}) \le \frac{n!}{c_1! \cdots c_m!}$$

 ℓ length of longest chain, $\ m$ length longest antichain r_i elements rank i,

 C_1,\ldots,C_m decomposition of $\mathcal P$ into chains, $c_i=|C_i|$

general bounds: (folklore)

$$r_1! \cdots r_\ell! \le e(\mathcal{P}) \le \frac{n!}{c_1! \cdots c_m!}$$

 ℓ length of longest chain, $\ m$ length longest antichain r_i elements rank i,

 C_1,\ldots,C_m decomposition of $\mathcal P$ into chains, $c_i=|C_i|$

general bounds: (folklore)

$$r_1! \cdots r_\ell! \le e(\mathcal{P}) \le \frac{n!}{c_1! \cdots c_m!}$$

 ℓ length of longest chain, m length longest antichain r_i elements rank i, C_1, \ldots, C_m decomposition of \mathcal{P} into chains, $c_i = |C_i|$

Posets from Young diagrams of partitions

 λ : partition (straight) shape

(4, 3, 2)

Posets from Young diagrams of partitions

 λ : partition (straight) shape

(4, 3, 2)

Posets from Young diagrams of partitions

 λ : partition (straight) shape

(4, 3, 2)

λ/μ : skew shape

(4, 3, 2)/(2, 1)

 λ : straight shape

 λ : straight shape

 λ : straight shape

 λ : straight shape

 λ : straight shape

View linear extension in the poset of a Young diagram as a filling with $1, 2, \ldots, n$ increasing in rows and columns.

Such fillings are called **Standard Young tableaux (SYT)** Let $f^{\lambda} := e(\lambda)$

Standard Young tableaux skew shape

 λ/μ : skew shape

Let
$$f^{\lambda/\mu} := e(\lambda/\mu)$$

number of SYT of straight shape

Example: hooks

number of SYT of straight shape

Example: hooks

number of SYT of straight shape

Example: hooks

number of SYT of $2\times n$ rectangle

Example: $2 \times n$ rectangle

number of SYT of $2\times n$ rectangle

Example: $2 \times n$ rectangle

number of SYT of $2\times n$ rectangle

Example: $2 \times n$ rectangle

$$f^{(4,4)} = 14$$

 $f^{(n,n)} = \frac{1}{n+1} \binom{2n}{n}$

Example

Example

Example

$$\begin{array}{c|c} \hline & 4 & 3 & 1 \\ \hline & 2 & 1 \end{array} \qquad f^{\Box \Box} = \frac{5!}{1^2 \cdot 2 \cdot 3 \cdot 4} = 5$$

- probabilistic proof by Greene-Nijenhuis-Wilf 79.
- bijective proof by Novelli-Pak-Stoyanovskii 97.

Asymptotics of large f^{λ}

From representation theory or the *RSK bijection*:

$$\sum_{\lambda,|\lambda|=n} (f^{\lambda})^2 = n!$$
Asymptotics of large f^{λ}

From representation theory or the *RSK bijection*:

$$\sum_{\lambda,|\lambda|=n} (f^{\lambda})^2 = n!$$

sum has subexponentially many terms, so $\max(f^{\lambda})$ about $\sqrt{n!}$.

What partition shapes λ^* maximize f^{λ} ?

Asymptotics of large f^{λ}

From representation theory or the *RSK bijection*:

$$\sum_{\lambda,|\lambda|=n} (f^{\lambda})^2 = n!$$

sum has subexponentially many terms, so $\max(f^{\lambda})$ about $\sqrt{n!}$.

What partition shapes λ^* maximize f^{λ} ?

Using hook-length formula and solving a variational problem Vershik-Kerov, Logan-Shepp 1977 found limit shape of λ^*/\sqrt{n} in the Plancherel measure.

Asymptotics of large f^{λ}

From representation theory or the *RSK bijection*:

$$\sum_{\lambda,|\lambda|=n} (f^{\lambda})^2 = n!$$

sum has subexponentially many terms, so $\max(f^{\lambda})$ about $\sqrt{n!}$.

What partition shapes λ^* maximize f^{λ} ?

Using hook-length formula and solving a variational problem Vershik-Kerov, Logan-Shepp 1977 found limit shape of λ^*/\sqrt{n} in the Plancherel measure.

Outline

• $f^{\lambda/\mu} = ?$

Example: zigzag strip z(n)

Example: zigzag strip z(n)

Example: zigzag strip z(n)

Euler numbers E_n

$$E_{2n+1} = f^{z(n)}$$

Example: zigzag strip z(n)

Euler numbers E_n

$$E_{2n+1} = f^{z(n)}$$

Recall $1 + E_1 x + E_2 \frac{x^2}{2!} + E_3 \frac{x^3}{3!} + E_4 \frac{x^4}{4!} + \dots = \sec(x) + \tan(x).$

Example: zigzag strip z(n)

$$E_{2n+1} = f^{z(n)}$$

Recall $1 + E_1 x + E_2 \frac{x^2}{2!} + E_3 \frac{x^3}{3!} + E_4 \frac{x^4}{4!} + \dots = \sec(x) + \tan(x).$

More about Euler numbers

E_n						
	1	2	5	16	61	$272 \ldots$
F_{n+1}						
	2	3	5	8	13	21

More about Euler numbers

E_n											
	1	2	5	16	61	$272 \ldots$					
$egin{array}{c} F_{n+1} \ 1 & 1 \end{array}$	2	3	5	8	13	21					
Fact			E_n .	$F_n > n!$							

More about Euler numbers

E_n 161 25 61 272 F_{n+1} 1 1 23 8 5 13 21Fact $E_n \cdot F_n > n!$

- note that $\phi > \pi/2$
- inequality comes from bound for $e(\mathcal{P})$ of Sidorenko for zigzag poset.

Alternating formulas for $f^{\lambda/\mu}$

Jacobi-Trudi identity (Feit 1953)

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[\frac{1}{(\lambda_i - \mu_j - i + j)!}\right]_{i,j=1}^{\ell(\lambda)}$$

Alternating formulas for $f^{\lambda/\mu}$

Jacobi-Trudi identity (Feit 1953)

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[\frac{1}{(\lambda_i - \mu_j - i + j)!}\right]_{i,j=1}^{\ell(\lambda)}$$

$$f^{\blacksquare} = 4! \cdot \det \begin{bmatrix} \frac{1}{2!} & \frac{1}{4!} \\ \frac{1}{1!} & \frac{1}{2!} \end{bmatrix}$$
$$= 4! \cdot \left(\frac{1}{4} - \frac{1}{24} \right) = 5.$$

Positive formulas for $f^{\lambda/\mu}$

Littlewood-Richardson rule

$$f^{\lambda/\mu} = \sum_{
u} c^{\lambda}_{\mu,
u} f^{
u}$$
 ,

where $c_{\mu,\nu}^{\lambda}$ are the Littlewood-Richardson coefficients.

Naruse's "hook-length" formula for $f^{\lambda/\mu}$

Theorem (Naruse 2014)

$$f^{\lambda/\mu} = n! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in \lambda \setminus D} \frac{1}{h(i,j)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of **excited diagrams** of λ/μ .

Let $S \subseteq \lambda$, A cell $(i, j) \in S$ is **excited** if $(i+1, j), (i, j+1), (i+1, j+1) \in \lambda \setminus S$.

Let $S \subseteq \lambda$, A cell $(i, j) \in S$ is **excited** if $(i+1, j), (i, j+1), (i+1, j+1) \in \lambda \setminus S$.

Let $S \subseteq \lambda$, A cell $(i, j) \in S$ is **excited** if $(i+1, j), (i, j+1), (i+1, j+1) \in \lambda \setminus S$.

Let $S \subseteq \lambda$, A cell $(i, j) \in S$ is **excited** if $(i+1, j), (i, j+1), (i+1, j+1) \in \lambda \setminus S$.

Let $S \subseteq \lambda$, A cell $(i, j) \in S$ is **excited** if $(i+1, j), (i, j+1), (i+1, j+1) \in \lambda \setminus S$.

Let $S \subseteq \lambda$, A cell $(i, j) \in S$ is **excited** if $(i+1, j), (i, j+1), (i+1, j+1) \in \lambda \setminus S$.

Let $S \subseteq \lambda$, A cell $(i, j) \in S$ is **excited** if $(i+1, j), (i, j+1), (i+1, j+1) \in \lambda \setminus S$.

Let $S \subseteq \lambda$, A cell $(i, j) \in S$ is **excited** if $(i+1, j), (i, j+1), (i+1, j+1) \in \lambda \setminus S$.

Let $S \subseteq \lambda$, A cell $(i, j) \in S$ is **excited** if $(i+1, j), (i, j+1), (i+1, j+1) \in \lambda \setminus S$.

Let $S \subseteq \lambda$, A cell $(i, j) \in S$ is **excited** if $(i+1, j), (i, j+1), (i+1, j+1) \in \lambda \setminus S$.

Let $S \subseteq \lambda$, A cell $(i, j) \in S$ is **excited** if $(i+1, j), (i, j+1), (i+1, j+1) \in \lambda \setminus S$.

Let $S \subseteq \lambda$, A cell $(i, j) \in S$ is **excited** if $(i+1, j), (i, j+1), (i+1, j+1) \in \lambda \setminus S$.

Let $S \subseteq \lambda$, A cell $(i, j) \in S$ is **excited** if $(i+1, j), (i, j+1), (i+1, j+1) \in \lambda \setminus S$.

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda/\mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

An **excited move** on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda/\mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

An **excited move** on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda/\mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

An **excited move** on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda/\mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

An **excited move** on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda/\mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda/\mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

An **excited move** on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

An **excited move** on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

An **excited move** on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

An **excited move** on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

An **excited move** on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

An **excited move** on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda/\mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

An **excited move** on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda/\mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

An **excited move** on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by (i + 1, j + 1)

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda/\mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Proposition
$$|\mathcal{E}(z(n))| = \frac{1}{n+1} {\binom{2n}{n}}.$$

Theorem (Naruse 2014)

$$f^{\lambda/\mu} = n! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in \lambda \setminus D} \frac{1}{h(i,j)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of **excited diagrams** of λ/μ .

Theorem (Naruse 2014)

$$f^{\lambda/\mu} = n! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in \lambda \setminus D} \frac{1}{h(i,j)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of **excited diagrams** of λ/μ .

Theorem (Naruse 2014)

$$f^{\lambda/\mu} = n! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in \lambda \setminus D} \frac{1}{h(i,j)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of **excited diagrams** of λ/μ .

Example

 $f^{-} = 3! \cdot \left(\frac{1}{1 \cdot 2 \cdot 2} + \frac{1}{2 \cdot 2 \cdot 3}\right)$

Theorem (Naruse 2014)

$$f^{\lambda/\mu} = n! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in \lambda \setminus D} \frac{1}{h(i,j)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of **excited diagrams** of λ/μ .

Example

 $f^{\square} = 3! \cdot \left(\frac{1}{1 \cdot 2 \cdot 2} + \frac{1}{2 \cdot 2 \cdot 3}\right) = 3! \left(\frac{1}{4} + \frac{1}{12}\right) = 2.$

Theorem (Naruse 2014)

$$f^{\lambda/\mu} = n! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in \lambda \setminus D} \frac{1}{h(i,j)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of **excited diagrams** of λ/μ .

Example

$$f^{\square} = 3! \cdot \left(\frac{1}{1 \cdot 2 \cdot 2} + \frac{1}{2 \cdot 2 \cdot 3}\right) = 3! \left(\frac{1}{4} + \frac{1}{12}\right) = 2.$$

 we have two q-analogues and a combinatorial proof (M, Pak, Panova, 2015,2016)

Theorem (Naruse 2014)

$$f^{\lambda/\mu} = n! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in \lambda \setminus D} \frac{1}{h(i,j)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of **excited diagrams** of λ/μ .

$$f^{\square} = 3! \cdot \left(\frac{1}{1 \cdot 2 \cdot 2} + \frac{1}{2 \cdot 2 \cdot 3}\right) = 3! \left(\frac{1}{4} + \frac{1}{12}\right) = 2.$$

- we have two q-analogues and a combinatorial proof (M, Pak, Panova, 2015,2016)
- Konvalinka (2016+) announced a probabilistic proof

Outline

•
$$f^{\lambda} = \frac{n!}{\prod_{u \in \lambda} h(u)}$$

• asymptotics

•
$$f^{\lambda/\mu} = n! \sum_{D \in \mathcal{E}(\lambda/\mu)} \cdots$$

• asymptotics?

Some known bounds

• Thoma-Verskhi-Kerov limit: let $\lambda^n \to (\alpha \mid \beta)$ in Frobenius coordinates,

 $a_i/n \to \beta_1 \quad b_i/n \to \beta_i$

Some known bounds

• Thoma-Verskhi-Kerov limit: let $\lambda^n \to (\alpha \mid \beta)$ in Frobenius coordinates,

$$a_i/n \to \beta_1 \quad b_i/n \to \beta_i$$

fix μ

Stanley 1993 $f^{\lambda^n/\mu} = f^{\lambda^n} s_\alpha (\alpha/-\beta)(1+O(1/n))$

Okounkov-Olshanski have explicit formulas for $f^{\lambda/\mu}/f^{\lambda}$.

Related work by Corteel-Goupil-Schaeffer 2004

Main bound from Naruse's formula

$$f^{\lambda/\mu} = n! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in \lambda \setminus D} \frac{1}{h(i,j)},$$

Let the naive hook-length formula

$$F(\lambda/\mu) := \frac{n!}{\prod_{(i,j)\in\lambda/\mu} h(i,j)}$$

Corollary

$$F(\lambda/\mu) \le f^{\lambda/\mu} \le |\mathcal{E}(\lambda/\mu)| \cdot F(\lambda/\mu)$$

Proof

LB: μ is an excited diagram

UB: The diagram that contributes the most is $D = \mu$.

$$F(\lambda/\mu) \le f^{\lambda/\mu} \le |\mathcal{E}(\lambda/\mu)| \cdot F(\lambda/\mu)$$

$$|\mathcal{E}(\lambda/\mu)| \le 2^n$$

$$F(\lambda/\mu) \le f^{\lambda/\mu} \le |\mathcal{E}(\lambda/\mu)| \cdot F(\lambda/\mu)$$

$|\mathcal{E}(\lambda/\mu)| \le 2^n$

Proof:

Excited diagrams correspond to certain non-intersecting paths in λ (Kreiman)

$$F(\lambda/\mu) \le f^{\lambda/\mu} \le |\mathcal{E}(\lambda/\mu)| \cdot F(\lambda/\mu)$$

 $|\mathcal{E}(\lambda/\mu)| \le 2^n$

Proof:

Excited diagrams correspond to certain non-intersecting paths in λ (Kreiman)

$$F(\lambda/\mu) \le f^{\lambda/\mu} \le |\mathcal{E}(\lambda/\mu)| \cdot F(\lambda/\mu)$$

$$|\mathcal{E}(\lambda/\mu)| \le 2^n$$

$$|\mathcal{E}(\lambda/\mu)| \le n^{2d^2}$$

where d size Durfee square of λ

in some special cases $F(\lambda/\mu)$ dwarfs $|\mathcal{E}(\lambda/\mu)|$

Comparing bounds

general poset bound:

$$r_1! \cdots r_\ell! \le f^{\lambda/\mu} \le \frac{n!}{c_1! \cdots c_m!}$$

$F(\lambda/\mu) \le f^{\lambda/\mu} \le |\mathcal{E}(\lambda/\mu)| \cdot F(\lambda/\mu)$

Comparing bounds

general poset bound:

Comparing bounds

general poset bound:

$$r_{1}! \cdots r_{\ell}! \leq f^{\lambda/\mu} \leq \frac{n!}{c_{1}! \cdots c_{m}!}$$

$$864 = 3!4!3! \leq f^{\lambda/\mu} \leq \frac{10!}{3!3!3!1!} = 16800$$

$$F(\lambda/\mu) \leq f^{\lambda/\mu} \leq |\mathcal{E}(\lambda/\mu)| \cdot F(\lambda/\mu)$$

 $1260 = \frac{10!}{54^2 3^2 2^2} \le f^{\lambda/\mu} \le 5 \cdot 1260 = 6300$

Main application:

Let k be shape (2k-1, 2k-2, ..., 1)/(k-1, k-2, ..., 1)

n = k(3k - 1)/2

Theorem (M., Pak, Panova 16)
$$-0.3237 \leq \frac{1}{n} \left(\log f^{\swarrow k} - \frac{1}{2}n \log n \right) \leq -0.0621$$

Compare with general bound for $e(\mathcal{P})$:

$$-0.7785 \le \frac{1}{n} \left(\log f \sqrt[n]{k} - \frac{1}{2}n \log n \right) \le 0.3694$$

$$|\mathcal{E}(\swarrow_{k})| = \prod_{1 \le i < j \le k} \frac{k+i+j-1}{i+j-1}$$

Lemma (Proctor 1990)

$$|\mathcal{E}(\swarrow_k)| = \prod_{1 \le i < j \le k} \frac{k+i+j-1}{i+j-1}$$

 express bounds in terms of (double) factorials and use Stirling's formula

Summary

• bounds from Naruse's formula

$$F(\lambda/\mu) \le f^{\lambda/\mu} \le |\mathcal{E}(\lambda/\mu)| \cdot F(\lambda/\mu)$$

• thick zigzags: $f \swarrow_k \approx \sqrt{n!}$ get good bounds for second asymptotic term

Summary

• bounds from Naruse's formula

$$F(\lambda/\mu) \le f^{\lambda/\mu} \le |\mathcal{E}(\lambda/\mu)| \cdot F(\lambda/\mu)$$

- thick zigzags: $f \swarrow_k \approx \sqrt{n!}$ get good bounds for second asymptotic term
- other shapes where row/col lengths grow like \sqrt{n} then $f^{\lambda/\mu}\approx \sqrt{n!}$
- λ,μ have Thoma-Vershik-Kerov limit, $f^{\lambda/\mu}$ has exponential growth

Some references

- Increasing and decreasing subsequences and their variants, R.P. Stanley, Proc. ICM, Vol I, 545-579
- Schubert calculus and hook formula, H. Naruse, slides Séminaire Lotharingien de Combinatoire 73, Strobl, Austria, 2014
- Asymptotics for the number of standard Young tableaux of skew shape, M., I. Pak, G. Panova, arxiv:1610.07561
- Hook formulas for skew shapes I and II, M., I. Pak, G. Panova, arxiv:1512:08348, arxiv:1610.04744

Theorem (Brightwell, Tetali 2003) $\frac{\log_2(e(B_n))}{2^n} = \log_2 \binom{n}{\lfloor n/2 \rfloor} - \frac{3}{2}\log_2(e) + o(1)$