Asymptotics for the number of standard Young tableaux of skew shape

Linear extensions of posets

\mathcal{P} be a ranked poset with n elements, a linear extension is a linear order or permutation of the elements compatible with the order of \mathcal{P}.

Linear extensions of posets

\mathcal{P} be a ranked poset with n elements, a linear extension is a linear order or permutation of the elements compatible with the order of \mathcal{P}.

Linear extensions of posets

\mathcal{P} be a ranked poset with n elements, a linear extension is a linear order or permutation of the elements compatible with the order of \mathcal{P}.

Linear extensions

$$
(w)(b)(l
$$

Linear extensions of posets

\mathcal{P} be a ranked poset with n elements, a linear extension is a linear order or permutation of the elements compatible with the order of \mathcal{P}.

Linear extensions

Linear extensions of posets

\mathcal{P} be a ranked poset with n elements, a linear extension is a linear order or permutation of the elements compatible with the order of \mathcal{P}.

Linear extensions

$e(\mathcal{P})$ number of linear extensions of \mathcal{P}

Complexity of counting linear extensions

$\mathcal{P}=B_{n}$ boolean lattice

Complexity of counting linear extensions

$\mathcal{P}=B_{n}$ boolean lattice

$e\left(B_{n}\right)$ known up to $n=6: 1,2,48,1680384, \ldots$

Complexity of counting linear extensions

Theorem (Brightwell, Winkler 1991)
For general posets \mathcal{P}, counting $e(\mathcal{P})$ is \#P-complete.

Complexity of counting linear extensions

Theorem (Brightwell, Winkler 1991)

For general posets \mathcal{P}, counting $e(\mathcal{P})$ is $\# P$-complete.

- study families of posets \mathcal{P} where $e(\mathcal{P})$ is computable

Complexity of counting linear extensions

Theorem (Brightwell, Winkler 1991)

For general posets \mathcal{P}, counting $e(\mathcal{P})$ is $\# P$-complete.

- study families of posets \mathcal{P} where $e(\mathcal{P})$ is computable
- find bounds for $e(\mathcal{P})$

General bounds

general bounds: (folklore)

$$
e(\mathcal{P}) \leq n!
$$

$$
48 \leq 8!
$$

General bounds

general bounds: (folklore)

$$
r_{1}!\cdots r_{\ell}!\leq e(\mathcal{P}) \leq \frac{n!}{c_{1}!\cdots c_{m}!}
$$

ℓ length of longest chain, m length longest antichain r_{i} elements rank i,
C_{1}, \ldots, C_{m} decomposition of \mathcal{P} into chains, $c_{i}=\left|C_{i}\right|$

General bounds

general bounds: (folklore)

$$
r_{1}!\cdots r_{\ell}!\leq e(\mathcal{P}) \leq \frac{n!}{c_{1}!\cdots c_{m}!}
$$

ℓ length of longest chain, m length longest antichain r_{i} elements rank i,
C_{1}, \ldots, C_{m} decomposition of \mathcal{P} into chains, $c_{i}=\left|C_{i}\right|$

$$
\begin{aligned}
& \ell=4 \\
& m=3
\end{aligned}
$$

General bounds

general bounds: (folklore)

$$
r_{1}!\cdots r_{\ell}!\leq e(\mathcal{P}) \leq \frac{n!}{c_{1}!\cdots c_{m}!}
$$

ℓ length of longest chain, m length longest antichain r_{i} elements rank i,
C_{1}, \ldots, C_{m} decomposition of \mathcal{P} into chains, $c_{i}=\left|C_{i}\right|$

$$
\begin{aligned}
& \ell=4 \\
& m=3
\end{aligned}
$$

$$
36=1!3!3!1!\leq 48 \leq \frac{8!}{4!2!2!}=420
$$

Posets from Young diagrams of partitions

λ : partition (straight) shape

$(4,3,2)$

Posets from Young diagrams of partitions

 λ : partition (straight) shape
$(4,3,2)$

Posets from Young diagrams of partitions

 λ : partition (straight) shape
$(4,3,2)$
λ / μ : skew shape

$(4,3,2) /(2,1)$

Linear extensions: standard Young tableaux

λ : straight shape

View linear extension in the poset of a Young diagram as a filling with $1,2, \ldots, n$ increasing in rows and columns.

1	2	3
4	5	

Linear extensions: standard Young tableaux

λ : straight shape

View linear extension in the poset of a Young diagram as a filling with $1,2, \ldots, n$ increasing in rows and columns.

1	2	3
4	5	

1	2	4
3	5	

Linear extensions: standard Young tableaux

λ : straight shape

View linear extension in the poset of a Young diagram as a filling with $1,2, \ldots, n$ increasing in rows and columns.

\[

\]

1	2	4
3	5	

1	2	5
3	4	

Linear extensions: standard Young tableaux

λ : straight shape

View linear extension in the poset of a Young diagram as a filling with $1,2, \ldots, n$ increasing in rows and columns.

1	2	5
3	4	

1	3	5
2	4	

1	3	4
2	5	

Linear extensions: standard Young tableaux

λ : straight shape

View linear extension in the poset of a Young diagram as a filling with $1,2, \ldots, n$ increasing in rows and columns.

1	2	3
4	5	

1	2	4
3	5	

1	2	5
3	4	

1	3	5
2	4	

1	3	4
2	5	

Such fillings are called Standard Young tableaux (SYT)
Let $f^{\lambda}:=e(\lambda)$

Standard Young tableaux skew shape λ / μ : skew shape

Let $f^{\lambda / \mu}:=e(\lambda / \mu)$

number of SYT of straight shape

Example: hooks

number of SYT of straight shape

Example: hooks

$$
f^{(6,1,1,1)}=\binom{8}{3}
$$

number of SYT of straight shape

Example: hooks

$$
f^{(6,1,1,1)}=\binom{8}{3}
$$

$$
f^{\left(p, 1^{q}\right)}=\binom{p+q-1}{q}
$$

number of SYT of $2 \times n$ rectangle

Example: $2 \times n$ rectangle

1	2			
3	4	\quad	1	3
:---	:---			
2	4			

number of SYT of $2 \times n$ rectangle
Example: $2 \times n$ rectangle

1	2			
3	4		1	3
:---	:---			
2	4			

$$
\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 & 6 \\
\hline
\end{array} \quad \begin{array}{|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 3 & 5 & 6 \\
\hline
\end{array}
$$

1	2	5
3	4	6

1	3	4
2	5	6

1	3	5
2	4	6

number of SYT of $2 \times n$ rectangle

Example: $2 \times n$ rectangle

1	2			
3	4	\quad	1	3
:---	:---			
2	4			

$$
\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 & 6 \\
\hline
\end{array}
$$

1	2	4
3	5	6

1	2	5
3	4	6

1	3	4
2	5	6

1	3	5
2	4	6

$$
f^{(4,4)}=14
$$

$$
f^{(n, n)}=\frac{1}{n+1}\binom{2 n}{n}
$$

Hook-length formula

$$
\left(\begin{array}{c}
\text { Theorem (Frame-Robinson-Thrall 1954) } \\
f^{\lambda}=n!\prod_{(i, j) \in \lambda} \frac{1}{h(i, j)}, \\
h(i, j)=\lambda_{i}-i+\lambda_{j}^{\prime}-j+1 \text { is the hook-length of }(i, j)
\end{array}\right.
$$

Hook-length formula

Theorem (Frame-Robinson-Thrall 1954)

$$
f^{\lambda}=n!\prod_{(i, j) \in \lambda} \frac{1}{h(i, j)},
$$

$h(i, j)=\lambda_{i}-i+\lambda_{j}^{\prime}-j+1$ is the hook-length of (i, j)

Hook-length formula

Theorem (Frame-Robinson-Thrall 1954)

$$
f^{\lambda}=n!\prod_{(i, j) \in \lambda} \frac{1}{h(i, j)},
$$

$h(i, j)=\lambda_{i}-i+\lambda_{j}^{\prime}-j+1$ is the hook-length of (i, j)

Example

$$
f^{\boxplus}
$$

Hook-length formula

Theorem (Frame-Robinson-Thrall 1954)

$$
f^{\lambda}=n!\prod_{(i, j) \in \lambda} \frac{1}{h(i, j)},
$$

$h(i, j)=\lambda_{i}-i+\lambda_{j}^{\prime}-j+1$ is the hook-length of (i, j)

Example

$$
\begin{array}{|l|l|l}
\hline 4 & 3 & 1 \\
\hline 2 & 1 & \\
\hline
\end{array}
$$

$$
f^{\boxplus}=\frac{5!}{1^{2} \cdot 2 \cdot 3 \cdot 4}=5
$$

Hook-length formula

Theorem (Frame-Robinson-Thrall 1954)

$$
f^{\lambda}=n!\prod_{(i, j) \in \lambda} \frac{1}{h(i, j)},
$$

$h(i, j)=\lambda_{i}-i+\lambda_{j}^{\prime}-j+1$ is the hook-length of (i, j)

Example

- probabilistic proof by Greene-Nijenhuis-Wilf 79.
- bijective proof by Novelli-Pak-Stoyanovskii 97.

Asymptotics of large f^{λ}
From representation theory or the RSK bijection:

$$
\sum_{\lambda,|\lambda|=n}\left(f^{\lambda}\right)^{2}=n!
$$

Asymptotics of large f^{λ}

From representation theory or the RSK bijection:

$$
\sum_{\lambda,|\lambda|=n}\left(f^{\lambda}\right)^{2}=n!
$$

sum has subexponentially many terms, so $\max \left(f^{\lambda}\right)$ about $\sqrt{n!}$.
What partition shapes λ^{*} maximize f^{λ} ?

Asymptotics of large f^{λ}

From representation theory or the RSK bijection:

$$
\sum_{\lambda,|\lambda|=n}\left(f^{\lambda}\right)^{2}=n!
$$

sum has subexponentially many terms, so $\max \left(f^{\lambda}\right)$ about $\sqrt{n!}$.
What partition shapes λ^{*} maximize f^{λ} ?
Using hook-length formula and solving a variational problem Vershik-Kerov, Logan-Shepp 1977 found limit shape of λ^{*} / \sqrt{n} in the Plancherel measure.

Asymptotics of large f^{λ}

From representation theory or the RSK bijection:

$$
\sum_{\lambda,|\lambda|=n}\left(f^{\lambda}\right)^{2}=n!
$$

sum has subexponentially many terms, so $\max \left(f^{\lambda}\right)$ about $\sqrt{n!}$.
What partition shapes λ^{*} maximize f^{λ} ?
Using hook-length formula and solving a variational problem Vershik-Kerov, Logan-Shepp 1977 found limit shape of λ^{*} / \sqrt{n} in the Plancherel measure.

Outline

$$
\text { - } f^{\lambda}=\frac{|\lambda|!}{\prod_{u \in \lambda} h(u)}
$$

- $f^{\lambda / \mu}=$?
- asymptotics

No product formula for $f^{\lambda / \mu}$

Example: zigzag strip $z(n)$

No product formula for $f^{\lambda / \mu}$
Example: zigzag strip $z(n)$
$\lambda / \mu: \square$

$f^{\lambda / \mu}: 2$
5
16
61
272 ...

No product formula for $f^{\lambda / \mu}$
Example: zigzag strip $z(n)$
$\lambda / \mu: \square$

$f^{\lambda / \mu}: 2$
5
16
61
272 ...

Euler numbers E_{n}

$$
E_{2 n+1}=f^{z(n)}
$$

No product formula for $f^{\lambda / \mu}$
Example: zigzag strip $z(n)$
$\lambda / \mu: \square$

$f^{\lambda / \mu}: 2$
5
16
61
272 ...

Euler numbers E_{n}

$$
E_{2 n+1}=f^{z(n)}
$$

Recall

$$
1+E_{1} x+E_{2} \frac{x^{2}}{2!}+E_{3} \frac{x^{3}}{3!}+E_{4} \frac{x^{4}}{4!}+\ldots=\sec (x)+\tan (x)
$$

No product formula for $f^{\lambda / \mu}$
Example: zigzag strip $z(n)$

$f^{\lambda / \mu}: 2$
5
16
61
272 ...
Euler numbers $E_{n} \sim \frac{2^{n+2} n!}{\pi^{n+1}}(1+o(1))$.

$$
E_{2 n+1}=f^{z(n)}
$$

Recall

$$
1+E_{1} x+E_{2} \frac{x^{2}}{2!}+E_{3} \frac{x^{3}}{3!}+E_{4} \frac{x^{4}}{4!}+\ldots=\sec (x)+\tan (x)
$$

More about Euler numbers

$$
\begin{array}{llllllll}
E_{n} & & & 5 & 16 & 61 & 272 & \ldots \\
& 1 & 2 & 5 & & & \\
F_{n+1} & 2 & 3 & 5 & 8 & 13 & 21 &
\end{array}
$$

More about Euler numbers
E_{n}
1
2
5
61
$272 \ldots$
3
5
8
13
21
F_{n+1}
112
Fact

$$
E_{n} \cdot F_{n} \geq n!
$$

More about Euler numbers

E_{n}

1	2	5	16	61	272
2	3	5	8	13	21

Fact

$$
E_{n} \cdot F_{n} \geq n!
$$

- note that $\phi>\pi / 2$
- inequality comes from bound for $e(\mathcal{P})$ of Sidorenko for zigzag poset.

Alternating formulas for $f^{\lambda / \mu}$
Jacobi-Trudi identity (Feit 1953)

$$
f^{\lambda / \mu}=|\lambda / \mu|!\cdot \operatorname{det}\left[\frac{1}{\left(\lambda_{i}-\mu_{j}-i+j\right)!}\right]_{i, j=1}^{\ell(\lambda)}
$$

Alternating formulas for $f^{\lambda / \mu}$

Jacobi-Trudi identity (Feit 1953)

$$
f^{\lambda / \mu}=|\lambda / \mu|!\cdot \operatorname{det}\left[\frac{1}{\left(\lambda_{i}-\mu_{j}-i+j\right)!}\right]_{i, j=1}^{\ell(\lambda)}
$$

Example

$$
\begin{aligned}
f^{巴} & =4!\cdot \operatorname{det}\left[\begin{array}{ll}
\frac{1}{2!} & \frac{1}{4!} \\
\frac{1}{1!} & \frac{1}{2!}
\end{array}\right] \\
& =4!\cdot\left(\frac{1}{4}-\frac{1}{24}\right)=5 .
\end{aligned}
$$

Positive formulas for $f^{\lambda / \mu}$

Littlewood-Richardson rule

$$
f^{\lambda / \mu}=\sum_{\nu} c_{\mu, \nu}^{\lambda} f^{\nu},
$$

where $c_{\mu, \nu}^{\lambda}$ are the Littlewood-Richardson coefficients.

Naruse's "hook-length" formula for $f^{\lambda / \mu}$
Theorem (Naruse 2014)

$$
f^{\lambda / \mu}=n!\sum_{D \in \mathcal{E}(\lambda / \mu)} \prod_{(i, j) \in \lambda \backslash D} \frac{1}{h(i, j)},
$$

where $\mathcal{E}(\lambda / \mu)$ is the set of excited diagrams of λ / μ.

Excited diagrams of λ / μ

Let $S \subseteq \lambda$,
A cell $(i, j) \in S$ is excited if

$$
(i+1, j),(i, j+1),(i+1, j+1) \in \lambda \backslash S .
$$

An excited move on an excited cell (i, j) : replace (i, j) in S by $(i+1, j+1)$
\square

Excited diagrams of λ / μ

Let $S \subseteq \lambda$,
A cell $(i, j) \in S$ is excited if

$$
(i+1, j),(i, j+1),(i+1, j+1) \in \lambda \backslash S .
$$

An excited move on an excited cell (i, j) :

$$
\text { replace }(i, j) \text { in } S \text { by }(i+1, j+1)
$$

Excited diagrams of λ / μ

Let $S \subseteq \lambda$,
A cell $(i, j) \in S$ is excited if

$$
(i+1, j),(i, j+1),(i+1, j+1) \in \lambda \backslash S .
$$

An excited move on an excited cell (i, j) :

$$
\text { replace }(i, j) \text { in } S \text { by }(i+1, j+1)
$$

Excited diagrams of λ / μ

Let $S \subseteq \lambda$,
A cell $(i, j) \in S$ is excited if

$$
(i+1, j),(i, j+1),(i+1, j+1) \in \lambda \backslash S .
$$

An excited move on an excited cell (i, j) :

$$
\text { replace }(i, j) \text { in } S \text { by }(i+1, j+1)
$$

Excited diagrams of λ / μ

Let $S \subseteq \lambda$,
A cell $(i, j) \in S$ is excited if

$$
(i+1, j),(i, j+1),(i+1, j+1) \in \lambda \backslash S .
$$

An excited move on an excited cell (i, j) :

$$
\text { replace }(i, j) \text { in } S \text { by }(i+1, j+1)
$$

Excited diagrams of λ / μ

Let $S \subseteq \lambda$,
A cell $(i, j) \in S$ is excited if

$$
(i+1, j),(i, j+1),(i+1, j+1) \in \lambda \backslash S .
$$

An excited move on an excited cell (i, j) :

$$
\text { replace }(i, j) \text { in } S \text { by }(i+1, j+1)
$$

Excited diagrams of λ / μ

Let $S \subseteq \lambda$,
A cell $(i, j) \in S$ is excited if

$$
(i+1, j),(i, j+1),(i+1, j+1) \in \lambda \backslash S
$$

An excited move on an excited cell (i, j) : replace (i, j) in S by $(i+1, j+1)$

Excited diagrams of λ / μ

Let $S \subseteq \lambda$,
A cell $(i, j) \in S$ is excited if

$$
(i+1, j),(i, j+1),(i+1, j+1) \in \lambda \backslash S .
$$

An excited move on an excited cell (i, j) :

$$
\text { replace }(i, j) \text { in } S \text { by }(i+1, j+1)
$$

Excited diagrams of λ / μ

Let $S \subseteq \lambda$,
A cell $(i, j) \in S$ is excited if

$$
(i+1, j),(i, j+1),(i+1, j+1) \in \lambda \backslash S .
$$

An excited move on an excited cell (i, j) :

$$
\text { replace }(i, j) \text { in } S \text { by }(i+1, j+1)
$$

Excited diagrams of λ / μ

Let $S \subseteq \lambda$,
A cell $(i, j) \in S$ is excited if

$$
(i+1, j),(i, j+1),(i+1, j+1) \in \lambda \backslash S .
$$

An excited move on an excited cell (i, j) :

$$
\text { replace }(i, j) \text { in } S \text { by }(i+1, j+1)
$$

Excited diagrams of λ / μ

Let $S \subseteq \lambda$,
A cell $(i, j) \in S$ is excited if

$$
(i+1, j),(i, j+1),(i+1, j+1) \in \lambda \backslash S .
$$

An excited move on an excited cell (i, j) :

$$
\text { replace }(i, j) \text { in } S \text { by }(i+1, j+1)
$$

宫

Excited diagrams of λ / μ

Let $S \subseteq \lambda$,
A cell $(i, j) \in S$ is excited if

$$
(i+1, j),(i, j+1),(i+1, j+1) \in \lambda \backslash S .
$$

An excited move on an excited cell (i, j) : replace (i, j) in S by $(i+1, j+1)$

Excited diagrams of λ / μ

Let $S \subseteq \lambda$,
A cell $(i, j) \in S$ is excited if

$$
(i+1, j),(i, j+1),(i+1, j+1) \in \lambda \backslash S .
$$

An excited move on an excited cell (i, j) : replace (i, j) in S by $(i+1, j+1)$

$$
\boxplus \rightarrow \boxplus
$$

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by $(i+1, j+1)$

$$
\square \rightarrow \square
$$

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by $(i+1, j+1)$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)
Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$:

$$
\text { replace }(i, j) \text { in } S \text { by }(i+1, j+1)
$$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)
Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example $\mathcal{E}(\square)=\{\square\}$

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$:

$$
\text { replace }(i, j) \text { in } S \text { by }(i+1, j+1)
$$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)
Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example $\mathcal{E}(\square)=\{\square, \square \square$

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$:

$$
\text { replace }(i, j) \text { in } S \text { by }(i+1, j+1)
$$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$:

$$
\text { replace }(i, j) \text { in } S \text { by }(i+1, j+1)
$$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by $(i+1, j+1)$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by $(i+1, j+1)$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by $(i+1, j+1)$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by $(i+1, j+1)$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by $(i+1, j+1)$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by $(i+1, j+1)$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by $(i+1, j+1)$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by $(i+1, j+1)$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$:
replace (i, j) in S by $(i+1, j+1)$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example

Excited diagrams of λ / μ (cont.)

An excited move on an excited cell (i, j) in $S \subseteq \lambda$: replace (i, j) in S by $(i+1, j+1)$

Definition: (Ikeda-Naruse 07, Knutson-Miller-Yong 05, Kreiman 05)

Excited diagrams $\mathcal{E}(\lambda / \mu)$: diagrams obtained from μ by applying iteratively excited moves on excited cells.

Example

Proposition $\quad \left\lvert\, \mathcal{E}\left(z(n) \left\lvert\,=\frac{1}{n+1}\binom{2 n}{n}\right.\right.$. \right.

Naruse's "hook-length" formula for $f^{\lambda / \mu}$
Theorem (Naruse 2014)

$$
f^{\lambda / \mu}=n!\sum_{D \in \mathcal{E}(\lambda / \mu)} \prod_{(i, j) \in \lambda \backslash D} \frac{1}{h(i, j)},
$$

where $\mathcal{E}(\lambda / \mu)$ is the set of excited diagrams of λ / μ.

Naruse's "hook-length" formula for $f^{\lambda / \mu}$

Theorem (Naruse 2014)

$$
f^{\lambda / \mu}=n!\sum_{D \in \mathcal{E}(\lambda / \mu)} \prod_{(i, j) \in \lambda \backslash D} \frac{1}{h(i, j)},
$$

where $\mathcal{E}(\lambda / \mu)$ is the set of excited diagrams of λ / μ.

Example

$\mathcal{E}(\square)=\{\square, \quad \square\} \quad \begin{aligned} & \square \\ & \frac{3}{21} \\ & 21\end{aligned}$

Naruse's "hook-length" formula for $f^{\lambda / \mu}$

Theorem (Naruse 2014)

$$
f^{\lambda / \mu}=n!\sum_{D \in \mathcal{E}(\lambda / \mu)} \prod_{(i, j) \in \lambda \backslash D} \frac{1}{h(i, j)},
$$

where $\mathcal{E}(\lambda / \mu)$ is the set of excited diagrams of λ / μ.

Example

$\mathcal{E}(\square)=\{\square, \quad \square\} \quad \begin{aligned} & \square \\ & \frac{3}{21} \\ & 21\end{aligned}$
$f^{\sharp}=3!\cdot\left(\frac{1}{1 \cdot 2 \cdot 2}+\frac{1}{2 \cdot 2 \cdot 3}\right)$

Naruse's "hook-length" formula for $f^{\lambda / \mu}$

Theorem (Naruse 2014)

$$
f^{\lambda / \mu}=n!\sum_{D \in \mathcal{E}(\lambda / \mu)} \prod_{(i, j) \in \lambda \backslash D} \frac{1}{h(i, j)},
$$

where $\mathcal{E}(\lambda / \mu)$ is the set of excited diagrams of λ / μ.

Example

$\mathcal{E}(\square)=\{\square, \quad \square\} \quad \begin{aligned} & \square \\ & \frac{3}{21} \\ & 21\end{aligned}$
$f^{\boxplus}=3!\cdot\left(\frac{1}{1 \cdot 2 \cdot 2}+\frac{1}{2 \cdot 2 \cdot 3}\right)=3!\left(\frac{1}{4}+\frac{1}{12}\right)=2$.

Naruse's "hook-length" formula for $f^{\lambda / \mu}$

Theorem (Naruse 2014)

$$
f^{\lambda / \mu}=n!\sum_{D \in \mathcal{E}(\lambda / \mu)} \prod_{(i, j) \in \lambda \backslash D} \frac{1}{h(i, j)},
$$

where $\mathcal{E}(\lambda / \mu)$ is the set of excited diagrams of λ / μ.

Example

$\mathcal{E}(\square)=\{\square, \quad \square\} \quad \begin{aligned} & \square \frac{3}{3} \\ & 211\end{aligned}$
$f^{\sharp}=3!\cdot\left(\frac{1}{1 \cdot 2 \cdot 2}+\frac{1}{2 \cdot 2 \cdot 3}\right)=3!\left(\frac{1}{4}+\frac{1}{12}\right)=2$.

- we have two q-analogues and a combinatorial proof (M , Pak, Panova, 2015,2016)

Naruse's "hook-length" formula for $f^{\lambda / \mu}$

Theorem (Naruse 2014)

$$
f^{\lambda / \mu}=n!\sum_{D \in \mathcal{E}(\lambda / \mu)} \prod_{(i, j) \in \lambda \backslash D} \frac{1}{h(i, j)},
$$

where $\mathcal{E}(\lambda / \mu)$ is the set of excited diagrams of λ / μ.

Example

$\mathcal{E}(\square)=\{\square, \quad \square\} \quad \begin{aligned} & \square \frac{3}{3} \\ & 211\end{aligned}$
$f^{\sharp}=3!\cdot\left(\frac{1}{1 \cdot 2 \cdot 2}+\frac{1}{2 \cdot 2 \cdot 3}\right)=3!\left(\frac{1}{4}+\frac{1}{12}\right)=2$.

- we have two q-analogues and a combinatorial proof (M , Pak, Panova, 2015,2016)
- Konvalinka (2016+) announced a probabilistic proof

Outline

- $f^{\lambda}=\frac{n!}{\prod_{u \in \lambda} h(u)}$
- asymptotics
- $f^{\lambda / \mu}=n!\sum_{D \in \mathcal{E}(\lambda / \mu)} \cdots$
- asymptotics?

Some known bounds

- Thoma-Verskhi-Kerov limit: let $\lambda^{n} \rightarrow(\alpha \mid \beta)$ in Frobenius coordinates,

$$
a_{i} / n \rightarrow \beta_{1} \quad b_{i} / n \rightarrow \beta_{i}
$$

Some known bounds

- Thoma-Verskhi-Kerov limit: let $\lambda^{n} \rightarrow(\alpha \mid \beta)$ in Frobenius coordinates,

$$
a_{i} / n \rightarrow \beta_{1} \quad b_{i} / n \rightarrow \beta_{i}
$$

fix μ
Stanley 1993

$$
f^{\lambda^{n} / \mu}=f^{\lambda^{n}} s_{\alpha}(\alpha /-\beta)(1+O(1 / n))
$$

Okounkov-Olshanski have explicit formulas for $f^{\lambda / \mu} / f^{\lambda}$.
Related work by Corteel-Goupil-Schaeffer 2004

Main bound from Naruse's formula

$$
f^{\lambda / \mu}=n!\sum_{D \in \mathcal{E}(\lambda / \mu)} \prod_{(i, j) \in \lambda \backslash D} \frac{1}{h(i, j)},
$$

Let the naive hook-length formula

$$
F(\lambda / \mu):=\frac{n!}{\prod_{(i, j) \in \lambda / \mu} h(i, j)}
$$

Corollary

$$
F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)
$$

Proof

LB: μ is an excited diagram
UB: The diagram that contributes the most is $D=\mu$.

Bounds for number of excited diagrams

$$
F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)
$$

$$
|\mathcal{E}(\lambda / \mu)| \leq 2^{n}
$$

Bounds for number of excited diagrams

$$
F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)
$$

$$
|\mathcal{E}(\lambda / \mu)| \leq 2^{n}
$$

Proof:

Excited diagrams correspond to certain non-intersecting paths in λ (Kreiman)

Bounds for number of excited diagrams

$$
F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)
$$

$$
|\mathcal{E}(\lambda / \mu)| \leq 2^{n}
$$

Proof:

Excited diagrams correspond to certain non-intersecting paths in λ (Kreiman)

Each path determined by steps \square or \square

Bounds for number of excited diagrams

$$
\frac{F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)}{|\mathcal{E}(\lambda / \mu)| \leq 2^{n}}
$$

$$
|\mathcal{E}(\lambda / \mu)| \leq n^{2 d^{2}}
$$

where d size Durfee square of λ
in some special cases $F(\lambda / \mu)$ dwarfs $|\mathcal{E}(\lambda / \mu)|$

Comparing bounds

general poset bound:

$$
r_{1}!\cdots r_{\ell}!\leq f^{\lambda / \mu} \leq \frac{n!}{c_{1}!\cdots c_{m}!}
$$

$$
F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)
$$

Comparing bounds

general poset bound:

$$
r_{1}!\cdots r_{\ell}!\leq f^{\lambda / \mu} \leq \frac{n!}{c_{1}!\cdots c_{m}!}
$$

$$
864=3!4!3!\leq f^{\lambda / \mu} \leq \frac{10!}{3!3!3!1!}=16800
$$

$$
F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)
$$

Comparing bounds

general poset bound:

$$
r_{1}!\cdots r_{\ell}!\leq f^{\lambda / \mu} \leq \frac{n!}{c_{1}!\cdots c_{m}!}
$$

$$
864=3!4!3!\leq f^{\lambda / \mu} \leq \frac{10!}{3!3!3!1!}=16800
$$

$$
F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)
$$

$$
1260=\frac{10!}{54^{2} 3^{2} 2^{2}} \leq f^{\lambda / \mu} \leq 5 \cdot 1260=6300
$$

Main application:

Let $\sqrt{7}$ be shape $(2 k-1,2 k-2, \ldots, 1) /(k-1, k-2, \ldots, 1)$
$n=k(3 k-1) / 2$

Theorem (M., Pak, Panova 16)

$$
-0.3237 \leq \frac{1}{n}\left(\log f^{\sqrt{k}}-\frac{1}{2} n \log n\right) \leq-0.0621
$$

Compare with general bound for $e(\mathcal{P})$:

$$
-0.7785 \leq \frac{1}{n}\left(\log f^{Z_{k}}-\frac{1}{2} n \log n\right) \leq 0.3694
$$

Why bound from Naruse's formula is good for V_{k}

$$
F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)
$$

Why bound from Naruse's formula is good for ∇_{k}

$$
F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)
$$

- $F\left(\nabla_{k}\right)=\frac{n!}{\prod_{u \in V_{k}} h(u)}$ ratio of easy hooks

Why bound from Naruse's formula is good for V_{k}

$$
F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)
$$

- $F\left(\nabla_{k}\right)=\frac{n!}{\prod_{u \in V_{k}} h(u)}$ ratio of easy hooks
- For this shape there is a product formula for $\left|\mathcal{E}\left(\Omega_{k}\right)\right|$

Lemma (Proctor 1990)

$$
\left|\mathcal{E}\left(\nabla_{k}\right)\right|=\prod_{1 \leq i<j \leq k} \frac{k+i+j-1}{i+j-1}
$$

Why bound from Naruse's formula is good for V_{k}

$$
F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)
$$

- $F\left(\nabla_{k}\right)=\frac{n!}{\prod_{u \in Z_{k}} h(u)}$ ratio of easy hooks
- For this shape there is a product formula for $\left|\mathcal{E}\left(\widetilde{V}_{k}\right)\right|$

Lemma (Proctor 1990)

$$
\left|\mathcal{E}\left(\nabla_{k}\right)\right|=\prod_{1 \leq i<j \leq k} \frac{k+i+j-1}{i+j-1}
$$

- express bounds in terms of (double) factorials and use Stirling's formula

Summary

- bounds from Naruse's formula

$$
F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)
$$

- thick zigzags: $f \sqrt{k} \approx \sqrt{n!}$ get good bounds for second asymptotic term

Summary

- bounds from Naruse's formula

$$
F(\lambda / \mu) \leq f^{\lambda / \mu} \leq|\mathcal{E}(\lambda / \mu)| \cdot F(\lambda / \mu)
$$

- thick zigzags: $f \sqrt{k} \approx \sqrt{n!}$ get good bounds for second asymptotic term
- other shapes where row/col lengths grow like \sqrt{n} then $f^{\lambda / \mu} \approx \sqrt{n!}$
- λ, μ have Thoma-Vershik-Kerov limit, $f^{\lambda / \mu}$ has exponential growth

Thank you!

Some references

- Increasing and decreasing subsequences and their variants, R.P. Stanley, Proc. ICM, Vol I, 545-579
- Schubert calculus and hook formula, H. Naruse, slides Séminaire Lotharingien de Combinatoire 73, Strobl, Austria, 2014
- Asymptotics for the number of standard Young tableaux of skew shape, M., I. Pak, G. Panova, arxiv:1610.07561
- Hook formulas for skew shapes I and II, M., I. Pak, G. Panova, arxiv:1512:08348, arxiv:1610.04744

Theorem (Brightwell, Tetali 2003)

$$
\frac{\log _{2}\left(e\left(B_{n}\right)\right)}{2^{n}}=\log _{2}\binom{n}{\lfloor n / 2\rfloor}-\frac{3}{2} \log _{2}(e)+o(1)
$$

