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[terations of functions over finite fields

In general, let F,, be the set of functions ( “mappings”) from the set [1..n]
to itself. With any ¢ € F, there is associated a functional graph on n
nodes, with a directed edge from vertex u to vertex v if p(u) = v. We are
interested here in functions over finite fields.

Functional graphs of mappings are sets of connected components; the
components are directed cycles of nodes; and each of those nodes is the
root of a tree.

The dynamics of iterations of polynomials and rational functions over
finite fields have attracted much attention in recent years, in part due to
their applications in cryptography and integer factorization methods like
Pollard rho algorithm.
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Finite dynamics

Let X be a finite set and f : X — X.

@ For x € X, let n> 1, m > 0 be the smallest integers such that
frtm(x) = fM(x). Then, per(x) = n, pper(x) = m.
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Finite dynamics

Let X be a finite set and f : X — X.
@ For x € X, let n > 1, m > 0 be the smallest integers such that
frm(x) = fM(x). Then, per(x) = n, pper(x) = m.
@ Functional graph: directed graph Gr with vertex set X and edges
(x, f(x)) for x € X (indeg(x) = #f1(x) and outdeg(x) = 1).
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Results on univariate dynamics

o (T.Rogers) Dynamics of x ++ x2.
T.Rogers. “The graph of the square mapping on the prime fields”. Disc.Math 148,
317-324, 1996.

o (A.Peinado et al.) Dynamics of x + x? + c.
A.Peinado, F.Montoya, J.Mufioz, A.Yuste. “Maximal periods of x2 4+ cin Fq". LNCS
2227, 219-228, 2001.

o (T.Vasiga, J.Shallit) Dynamics of x ++ x? — 2.
T.Vasiga, J.Shallit. “On the iteration of certain quadratic maps over GF(p)". Disc.Math
227, 219-240, 2004.

@ (W.-S.Chou, I.E.Shparlinski) Dynamics of x — x©.

W.-S.Chou, |.E.Shparlinski. “On the cycle structure of repeated exponentiation modulo a

prime”. Journal of Number Theory 107, 345-356, 2004.
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Results on univariate dynamics (cont)

o (S.Ugolini) Dynamics of x ++ x +x~1 and x + x9 4+ x~9.
S.Ugolini. “Graphs associated with the map x — x + x~! in finite fields of characteristic

three and five”. Journal of Number Theory 133, 1207-1228, 2013.

@ (T.Gassert) Dynamics of Chebyshev polynomials.
T.Gassert. “Chebyshev action on finite fields”. Disc.Math 315-316, 83-94, 2014.

@ (C.Qureshi, D.Panario) Dynamics of Rédei functions.
C.Qureshi, D.Panario. “Rédei actions on finite fields and multiplication map in cyclic

groups”. SIAM Journal on Discrete Mathematics 29, 1486-1503, 2015.

@ (R.Martins, D.Panario) Heuristics and randomness.
R.Martins, D.Panario. “On the heuristic of approximating polynomials over finite fields by

random mappings”. International Journal of Number Theory 12, 1987-2016, 2016.
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Topics of interest in finite dynamics
[terations of functions over finite fields have centered on:

period and preperiod,;

(average) rho length;

number of connected components;

length of cycles (largest, smallest, average);

number of fix points and conditions to be a permutation;
isomorphic graphs (mathematically, algorithmically);

average behavior varying p, 2 < p < N, N — oc;

and so on.

Iterations of some functions have strong symmetries that can be
mathematically explained.
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Example: dynamics of Rédei functions

o Rédei function: (x +/¥)" = N(x,y) + D(x,y)\/y.

For a € B — R(x,a) = p(=2 defined over P1(F,).

@ We denote by G(n, a, q) its functional graph.

Figure: The functional graph G(3, 1, 37) associated to the Rédei function R3(x,1) = )3:3(;:3_)1(

defined over the projective line P!(F37).
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Rédei functional graph

Example: the functional graph of R3(x,1) = ;‘iﬁ’{ over P(Fs7)

° q—( ) =36=22.32 5 w=4v=9n=3and 9(3) = (3,3)
d
G(3,1,37) ~ @ { ;pd((3)) x Cyc(oq4(3), T(373))} @ {o,0}

d|4
~ 2x Cyc(1, T33)) @ Cyc(2, T(33)) @ {e, 0}

-
i
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Algebraic dynamical system (ADS)

Definition 1

Let Fi,...,Fm € Fq(X1,...,Xm) be m rational functions in m variables
over the finite field F, of g elements. The algebraic dynamical system
(ADS) generated by F = {F1,..., Fy} is the dynamical system formed by
F-(O) = X; and the iterations

1

Fi(k)=Fi(F1(k_1)7-..7FIS"Ik_1))7 k:1727"‘7 ’=177m

ADSs are challenging mathematical objects with interesting algebraic and
number theoretic properties. They have found applications in
pseudorandom number generators (PRNGs),

biology and physics; see Shparlinski's survey in Section 10.5 of G.Mullen,
D.Panario “Handbook of Finite Fields”. CRC Press, 2013.
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Part |l

Heuristic - Polynomials and Random Mappings
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Dynamics of Polynomials over FF - Pollard’s Method

@ Proposed originally for the factorization of integers in 1975.

@ Used for the factorization of the 8th Fermat number in 1981.

@ Variant for the discrete logarithm problem (DLP) in 1978.

o Considered by many the most efficient method against the ECDLP.

D. Johnson, A. Menezes, S. Vanstone, Elliptic Curve Digital Signature Algorithm, Int. J.
of Information Security, 2001.

Wiener M., Zuccherato R., Faster attacks on elliptic curve cryptosystems, Proceedings
of Selected Areas in Cryptography: 5th Annual International Workshop, 1998.

R. Gallant, R. Lambert, S. Vanstone, Improving the parallelized Pollard lambda search
on anomalous binary curves, Mathematics of Computation, 2000.

... and many more.
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Random Mappings

Definition

(i) A mapping is a function of the form ¢ : [n] — [n].

(ii) A random mapping is a mapping chosen uniformly at random.

@ Interesting parameters: rho length of a random node, number of

components, number of cyclic nodes, etc.

@ Average rho length of polynomials: approximated by mappings.
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Figure : Average rho length.
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Heuristic - Polynomials and Mappings

@ Heuristic proposed by Pollard in the analysis of his algorithm.

Heuristic
Average rho length N Average rho length
of quadratic polynomials = of mappings

Theorem

En[p]wﬁl%n, as n— oo.

For example: J. Arney , E. Bender, Random mappings with constraints on coalescence
and number of origins, Pacific J. Math, 1982.

@ Refinement of the heuristic?

Arithmetic properties of Parameters that affect the
quadratic polynomials structure of a class of mappings
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Heuristic - Polynomials and Mappings
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Figure : Functional graph of f(x) = x2+1 (mod 13).

Daniel Panario Dynamics of Mappings and Polynomials 15 / 38



Heuristic - Polynomials and Mappings

Figure : Distribution of indegrees of f(x) = x> + 1 (mod 13).

o x2 + a (mod p): all but one nodes have indegree either 0 or 2.
@ Mappings considered in the heuristic: no restriction on indegrees.

@ Distribution of indegrees: relevant?
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Heuristic - Polynomials and Mappings

Definition (Coalescence of a mapping)
V(p): the variance of the distribution of indegrees of a mapping . }

e If X = X, is the indegree of a random node,

1 1 -
BX]= Y ¢l =1 and VIX]=-1+ Y —IF ()P,
yeln] y€ln]
Example 2

Let f over Fp, p > 2, of degree 2. Since the expected preimage size of a
random uniform element of [F,, is 1, it follows that

1 1 p-11 1
Vi) =Y Sl -1=—+ 2. 2411 =
XG]Fpp P 2 P P
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Heuristic - Polynomials and Mappings

@ J-mappings: mappings with indegrees in a fixed set
J C N containing zero and some j > 1.
element of J

Theorem (Arney & Bender, 1982)

If X is the asymptotic average coalescence of [J-mappings, then

EJ [rho length] ~ \/7n/2)\, as n — oo.

In the unrestricted case A = 1.

Similar results hold for other parameters.
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Heuristic - Polynomials and Mappings

(variance of the)

Distribution of indegrees:
Affects the structure of a class of mappings.

o Let f be a polynomial modulo p and let V/(f) be its coalescence. The
Brent-Pollard heuristic predicts that the average rho length of f is:

m™n

2V(f)

o Factorization of the eighth Fermat number: f(x) = x*" 4 1.

Brent R., Pollard J., Factorization of the eighth Fermat number, Math. Comp., 1981.
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Our results: {0, k}-Polynomials - {0, k}-Mappings
@ We consider {0, k}-mappings with the following motivation.
Theorem
Let f(x) = x* + a be a polynomial modulo p. If p=1 (mod k), then
(i) there is exactly one node with indegree 1;

(ii) there are exactly (p — 1)/k nodes with indegree k;
(i) all the other nodes have indegree 0.

We refer to these polynomials as {0, k }-polynomials.

Figure: Functional graph
of x>+ 1 (mod 13).
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Our Results - Motivations

@ Examples:
© {0,2}-mappings: polynomials x> + a (mod p), p odd.
@ {0, k}-mappings: polynomials x* +a (mod p), p=1 (mod k).
@ Heuristic approximation of polynomials by mappings:
@ J. M. Pollard, A monte carlo method for factorization, BIT, 1975.
© R. Brent and J. Pollard, Factorization of the eighth Fermat number,
Math. Comp. 1981.

We focus here on cycles and periods of iterations of mappings over finite
fields with indegrees restricted to {0, k}.
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Our Results

Let T(f) and B(f) denote, respectively, the least common multiple and
the product of the length of the cycles of f. Harris (1973) proved that
log T converges in distribution to a standard normal distribution.

Schmutz (2011) gives asymptotic estimates for the expected value of T
and B over all mappings on n nodes.

We obtain the following results:
@ we give asymptotic estimates for the expected value of T and B over
{0, k}-mappings;

@ we prove that log T and log B converge in distribution to a standard
normal distribution, when properly centered and normalized;

@ we show that log B — log T converges in probability to zero, when
properly normalized;

@ we present theoretical and numerical results concerning the use of
{0, k}-mappings as heuristic models for {0, k }-polynomials.
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Part Il
Cycles of {0, k}-Mappings
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Parameter T: Definition

Definition ( Parameter T )

If ¢ is a mapping, then T(p) is the least common multiple of the length of
the cycles of .

Figure : The mapping ¢(x) = x® + 2 (mod 11) satisfies T(p) = 2.
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Parameter T: Definition

Figure : LCM of the length of the cycles: T(p) = 2.

@ Equivalent definitions for T:
@ Period of the sequence p(™ = @ o (m=1) m>1.
@ The least integer T > 1 s.t. o™ T) = (™ for all m > my.
© Order of the permutation given by the cyclic nodes.
25 /38



Parameter T: Convergence to Gaussian Distribution

Theorem ( Convergence in distribution of log T )

X
2
- _ = e—t /2dt,
n—00 b,

For any fixed x € R : lim P, [M < x] = L
V2T J o
where h, = (log? n)/8 and b, = (log®/? n)/\/24.

B. Harris, The asymptotic distribution of the order of elements in symmetric semigroups,
Journal of Combinatorial Theory Series A, 1973.

y t=x

o y = exp(-t¥/2)

Figure : Region with area A = / et /24t

— 00
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Parameter T: Expected Value

Theorem (Convergence in distribution of log T)

. . log T — h, 1 Y
For any fixed x € R : nllm P, [ b, < x] = vria e dt,

where h, = (log? n)/8 and b, = (log®/? n)/\/24.

B. Harris, The asymptotic distribution of the order of elements in symmetric semigroups,
Journal of Combinatorial Theory Series A, 1973.

Theorem ( Expected value of T )

E[T] = exp <k0\3/|ogTzn(1+o(1))), ——

where ky ~ 3.36.

Schmutz, E. Period lengths for iterated functions. Combinatorics, Probability and
Computing, 2011.
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Parameter B

Definition ( Parameter B )
If f is a mapping, then B(y) is product of the length of the cycles of . J

Figure : Product of the length of the cycles: B(y) = 4.
Theorem ( Expected value of B )

E,[B] = exp (g%(l + o(l))) . = a
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Our results: {0, k}-mappings modelling {0, k }-polynomials

Theorem (Schmutz 2011)

: 1
l0g E,\[B] ~ 5 -/ and 1ogE,[T] ~ ko V-
og>n

Theorem (Martins, Panario, Qureshi, Schmutz 2016)

kg, 3 afn T A LN S
log S/ [B] > \/: and logE; "' [T] ~ ko X log?Pn

o Arney & Bender results:

Average rho length Np 1 n—oo TN
: : Enlol "~/ =
of unrestricted mappings 2

Average rho length IEJ[ ] n—oo [N
of J-mappings n P
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Our results: {0, k}-mappings modelling {0, k }-polynomials
@ Expected value of T for {0, k}-mappings:

Let Eﬁo’k}(T) be the expected value of T over the class of mappings
on n nodes with indegrees restricted to the set {0, k}, n = kr. Then,

n/\)1/3
log EL4H(T) = kolo(ngﬁ()nm(l +o(1),

as r approaches infinity, where A = k — 1, ko = 3(3/)%3 and

0 e
| = log | dt.
J; oes (=)

@ Expected value of B for {0, k}-mappings:

o~

Let Ego’k}(B) be the expected value of B over the class of mappings
on n nodes with indegrees restricted to the set {0, k}, n = kr. Then,
as r approaches infinity and for A = k — 1,

log E{4 (B) = g (g)”3 (1+ o(1)).
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Our results: {0, k}-mappings modelling {0, k }-polynomials
e Convergence in distribution of log T for {0, k}-mappings:

Let k = k(r) and n = n(r) be sequences such that n = kr and, for
some 0 < a < 1, k = o(n'~%) as r approaches infinity. Let

ftn = 3log®(y/n/) and 02 = Llog3(y/n/A). Let T(f) denote the
least common multiple of the length of the cycles of a mapping f
and, for r > 1, let X,, be the random variable defined over the space
of {0, k}-mappings on n nodes as X, = (log T — 11p) /0. Then, the
sequence defined by X, converges in distribution to a standard normal
distribution.

In other words, for any real number x,
P (log T < pip + x00) = ¢(x) + 0x(1),

as r approaches infinity, where the notation ox(-) indicates that the
error term depends on x. Moreover, if c is a positive constant, then
the convergence is uniform for |x| < cy/log n.
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Our results: {0, k}-mappings modelling {0, k }-polynomials

e Convergence in distribution of log B for {0, k}-mappings:
similar results as for T above (statement skipped here).

@ B may be a good approximation for T:
Let k = k(r) and n = n(r) be sequences such that n = kr and, for
some 0 < a < 1, k = o(n*~%) as r approaches infinity. For r > 1, let
Xn be the random variable defined over {0, k}-mappings on n nodes
as xp = (logB — log T)/o,, where o, = % log®?(\/n/X). Then, the
sequence defined by , converges in probability to zero. In other
words, for all € > 0 we have, as r approaches infinity,

P (x> €) = o(1).
e We also consider k = k(n) = o(n).

@ We have experiments on the parameters T and B.
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Sketch of a Proof

Let Qi,o’k} be the set of {0, k}-mappings, Z = Z(f) be the set of cyclic
nodes of a mapping f € Q% and denote by Z = |Z].

We index probabilities and expected values by the set of allowed indegrees
of the class of mappings in question: N in the general random case and

{0, k} in our case. We can write the expected value of T over Qio’k} as
n
EPIT = Y Pz = mEPTIZ = m)
m=1

= Y PPz = mm,,
m=1

where M, is the expected order of a random permutation of S,,.
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Sketch of Proof (cont)

Lemma

If f is a {0, k}-mapping on n nodes, then n = kh for some h < 1 and the
coalescence of a f is A\ = \(f) = k — 1.

Indeed, since there are exactly h = n/k nodes with indegree k, the
coalescence of a {0, k}-mapping satisfies

A\ = kP —1=k—1.

S|

n
k
For }P’go’k}[z = m] we use the following result:

Lemma (Rubin and Sitgreaves, 1953)
If\=k—1, then

~1
POz = m = akm2 (1LY (71
" m—1 m '
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Sketch of Proof (cont)

For M,,, the expected order of a random uniform permutation, we use
classical results due to Erdos-Turan and others; we use a version with
improved error terms given in the next lemma.

Lemma (Stong 1998)

Let M, be the expected order of a random permutation of S, and let

Bo = /8l where
= / log log (—) dt.
0 1

vmlogl
Iog/\/lm—ﬁml +0 ( m o8 ogm)
log m log m

Then,
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Sketch of Proof (cont)

Let m be the integer that maximizes ]P’}go’k} [Z = m|Mp,. We estimate the
expected value of T by noting that, for all my € [1, n],

P (Z = molMim, < ERH[T] < P9 (Z = A M,

To study ]P’ﬁo’k}[z = m|Mp,, we extend the binomials in Rubin and
Sitgreaves's result using the Gamma function, and use Stong's result to
finally consider the function

r(h) M(n—x) X
Fh—x+1) T(n) ex"(ﬁf Iogx)’

forn>1, —-1<e<1, ¢ne: (1,n) > Rand B = fo+e.

bne(x) = Axk* !
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Sketch of Proof (cont)

We show that log ¢, -(x) has a unique maximum in (1, n) at

3/m\2/3 1
2/3, /2 (2 - -

At that value, for k. = ;‘/3%3, log ¢n.e(x) takes the value

n\1/3 1
ke (X) m(1+0(1))'

With that we prove the main result:

13 1

where A = k — 1 and ko = (3/)%/33/2=3.36....

Daniel Panario Dynamics of Mappings and Polynomials 37 /38



Conclusions and Future Work

We give, for {0, k}-mappings, the expected value of the parameter T, the
lcm of the length of the cycles in {0, k}-mappings, and the parameter B,
the product of the length of the cycles. We give lognormality results for
these parameters, and study the difference logB — log T.

In addition, we also have results for k = k(n) = o(n); an algorithm for
generating uniform {0, k}-mappings; and some theoretical and
experimental results on the parameters for certan families of

{0, k}-polynomials.

Future work include extending these results to other type of J-mappings.
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