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Iterations of functions over finite fields

In general, let Fn be the set of functions (“mappings”) from the set [1..n]
to itself. With any ϕ ∈ Fn there is associated a functional graph on n
nodes, with a directed edge from vertex u to vertex v if ϕ(u) = v . We are
interested here in functions over finite fields.

Functional graphs of mappings are sets of connected components; the
components are directed cycles of nodes; and each of those nodes is the
root of a tree.

The dynamics of iterations of polynomials and rational functions over
finite fields have attracted much attention in recent years, in part due to
their applications in cryptography and integer factorization methods like
Pollard rho algorithm.
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Finite dynamics

Let X be a finite set and f : X → X .

For x ∈ X , let n ≥ 1,m ≥ 0 be the smallest integers such that
f n+m(x) = f m(x). Then, per(x) = n, pper(x) = m.
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Finite dynamics

Let X be a finite set and f : X → X .

For x ∈ X , let n ≥ 1,m ≥ 0 be the smallest integers such that
f n+m(x) = f m(x). Then, per(x) = n, pper(x) = m.

Functional graph: directed graph Gf with vertex set X and edges
(x , f (x)) for x ∈ X (indeg(x) = #f −1(x) and outdeg(x) = 1).
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Results on univariate dynamics

(T.Rogers) Dynamics of x 7→ x2.
T.Rogers. “The graph of the square mapping on the prime fields”. Disc.Math 148,

317-324, 1996.

(A.Peinado et al.) Dynamics of x 7→ x2 + c .
A.Peinado, F.Montoya, J.Muñoz, A.Yuste. “Maximal periods of x2 + c in Fq”. LNCS

2227, 219-228, 2001.

(T.Vasiga, J.Shallit) Dynamics of x 7→ x2 − 2.
T.Vasiga, J.Shallit. “On the iteration of certain quadratic maps over GF(p)”. Disc.Math

227, 219-240, 2004.

(W.-S.Chou, I.E.Shparlinski) Dynamics of x 7→ xe .
W.-S.Chou, I.E.Shparlinski. “On the cycle structure of repeated exponentiation modulo a

prime”. Journal of Number Theory 107, 345-356, 2004.
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Results on univariate dynamics (cont)

(S.Ugolini) Dynamics of x 7→ x + x−1 and x 7→ xd + x−d .
S.Ugolini. “Graphs associated with the map x 7→ x + x−1 in finite fields of characteristic

three and five”. Journal of Number Theory 133, 1207-1228, 2013.

(T.Gassert) Dynamics of Chebyshev polynomials.
T.Gassert. “Chebyshev action on finite fields”. Disc.Math 315-316, 83-94, 2014.

(C.Qureshi, D.Panario) Dynamics of Rédei functions.
C.Qureshi, D.Panario. “Rédei actions on finite fields and multiplication map in cyclic

groups”. SIAM Journal on Discrete Mathematics 29, 1486-1503, 2015.

(R.Martins, D.Panario) Heuristics and randomness.
R.Martins, D.Panario. “On the heuristic of approximating polynomials over finite fields by

random mappings”. International Journal of Number Theory 12, 1987–2016, 2016.
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Topics of interest in finite dynamics

Iterations of functions over finite fields have centered on:

period and preperiod;

(average) rho length;

number of connected components;

length of cycles (largest, smallest, average);

number of fix points and conditions to be a permutation;

isomorphic graphs (mathematically, algorithmically);

average behavior varying p, 2 ≤ p ≤ N,N →∞;

and so on.

Iterations of some functions have strong symmetries that can be
mathematically explained.
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Example: dynamics of Rédei functions

Rédei function: (x +
√

y)n = N(x , y) + D(x , y)
√

y .

For a ∈ F∗q → Rn(x , a) = N(x ,a)
D(x ,a) defined over P1(Fq).

We denote by G(n, a, q) its functional graph.

Figure: The functional graph G(3, 1, 37) associated to the Rédei function R3(x , 1) = x3+3x
3x2+1

defined over the projective line P1(F37).
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Rédei functional graph

Example: the functional graph of R3(x , 1) = x3+3x
3x2+1

over P1(F37)

q −
(

a
q

)
= 36 = 22 · 32 ⇒ ω = 4, ν = 9, n = 3 and 9(3) = (3, 3)

G(3, 1, 37) '
⊕
d |4

{
ϕ(d)

od(3)
× Cyc(od(3),T(3,3))

}
⊕ {•, •}

' 2× Cyc(1,T(3,3))⊕ Cyc(2,T(3,3))⊕ {•, •}
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Algebraic dynamical system (ADS)

Definition 1

Let F1, . . . ,Fm ∈ Fq(X1, . . . ,Xm) be m rational functions in m variables
over the finite field Fq of q elements. The algebraic dynamical system
(ADS) generated by F = {F1, . . . ,Fm} is the dynamical system formed by

F
(0)
i = Xi and the iterations

F
(k)
i = Fi (F

(k−1)
1 , . . . ,F

(k−1)
m ), k = 1, 2, . . . , i = 1, . . . ,m.

ADSs are challenging mathematical objects with interesting algebraic and
number theoretic properties. They have found applications in
pseudorandom number generators (PRNGs),
biology and physics; see Shparlinski’s survey in Section 10.5 of G.Mullen,

D.Panario “Handbook of Finite Fields”. CRC Press, 2013.
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Part II

Heuristic - Polynomials and Random Mappings

Daniel Panario Dynamics of Mappings and Polynomials 11 / 38



Dynamics of Polynomials over FF - Pollard’s Method

Proposed originally for the factorization of integers in 1975.

Used for the factorization of the 8th Fermat number in 1981.

Variant for the discrete logarithm problem (DLP) in 1978.

Considered by many the most efficient method against the ECDLP.

D. Johnson, A. Menezes, S. Vanstone, Elliptic Curve Digital Signature Algorithm, Int. J.
of Information Security, 2001.

Wiener M., Zuccherato R., Faster attacks on elliptic curve cryptosystems, Proceedings
of Selected Areas in Cryptography: 5th Annual International Workshop, 1998.

R. Gallant, R. Lambert, S. Vanstone, Improving the parallelized Pollard lambda search
on anomalous binary curves, Mathematics of Computation, 2000.

. . . and many more.
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Random Mappings
Definition

(i) A mapping is a function of the form ϕ : [n] −→ [n].

(ii) A random mapping is a mapping chosen uniformly at random.

Interesting parameters: rho length of a random node, number of
components, number of cyclic nodes, etc.

Average rho length of polynomials: approximated by mappings.

Figure : Average rho length. Figure : # components.
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Heuristic - Polynomials and Mappings

Heuristic proposed by Pollard in the analysis of his algorithm.

Heuristic of quadratic polynomials
Average rho length

of quadratic polynomials
≈ Average rho length

of mappings

Theorem

En[ρ] ∼
√
πn

2
, as n→∞.

For example: J. Arney , E. Bender, Random mappings with constraints on coalescence

and number of origins, Pacific J. Math, 1982.

Refinement of the heuristic?

Arithmetic properties of
quadratic polynomials

XXX
Parameters that affect the

structure of a class of mappings
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Heuristic - Polynomials and Mappings

Figure : Functional graph of f (x) = x2 + 1 (mod 13).

Daniel Panario Dynamics of Mappings and Polynomials 15 / 38



Heuristic - Polynomials and Mappings

Figure : Distribution of indegrees of f (x) = x2 + 1 (mod 13).

x2 + a (mod p): all but one nodes have indegree either 0 or 2.

Mappings considered in the heuristic: no restriction on indegrees.

Distribution of indegrees: relevant?
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Heuristic - Polynomials and Mappings

Definition (Coalescence of a mapping)

V (ϕ): the variance of the distribution of indegrees of a mapping ϕ.

If X = Xϕ is the indegree of a random node,

E[X ] =
∑
y∈[n]

1

n
|ϕ−1(y)| = 1 and V[X ] = −1 +

∑
y∈[n]

1

n
|f −1(y)|2.

Example 2

Let f over Fp, p > 2, of degree 2. Since the expected preimage size of a
random uniform element of Fp is 1, it follows that

V (f ) =
∑
x∈Fp

1

p
|f −1(x)|2 − 1 =

1

p
+

p − 1

2
· 1

p
· 4− 1 = 1− 1

p
.
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Heuristic - Polynomials and Mappings
a
a

J -mappings: mappings with indegrees in a fixed set
J ⊆ N containing zero and some j > 1.

Theorem (Arney & Bender, 1982)

If λ is the asymptotic average coalescence of J -mappings, then

EJn [rho length] ∼
√
πn/2λ, as n→∞.

In the unrestricted case λ = 1.

Similar results hold for other parameters.
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Heuristic - Polynomials and Mappings

(variance of the)

Distribution of indegrees:
Affects the structure of a class of mappings.

Let f be a polynomial modulo p and let V (f ) be its coalescence. The
Brent-Pollard heuristic predicts that the average rho length of f is:√

πn

2V (f )
.

Factorization of the eighth Fermat number: f (x) = x2m + 1.

Brent R., Pollard J., Factorization of the eighth Fermat number, Math. Comp., 1981.
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Our results: {0, k}-Polynomials - {0, k}-Mappings
We consider {0, k}-mappings with the following motivation.

Theorem

Let f (x) = xk + a be a polynomial modulo p. If p ≡ 1 (mod k), then

(i) there is exactly one node with indegree 1;

(ii) there are exactly (p − 1)/k nodes with indegree k;

(iii) all the other nodes have indegree 0.

We refer to these polynomials as {0, k}-polynomials.

Figure: Functional graph
of x3 + 1 (mod 13).
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Our Results - Motivations

Examples:

1 {0, 2}-mappings: polynomials x2 + a (mod p), p odd.

2 {0, k}-mappings: polynomials xk + a (mod p), p ≡ 1 (mod k).

Heuristic approximation of polynomials by mappings:

1 J. M. Pollard, A monte carlo method for factorization, BIT, 1975.

2 R. Brent and J. Pollard, Factorization of the eighth Fermat number,
Math. Comp. 1981.

We focus here on cycles and periods of iterations of mappings over finite
fields with indegrees restricted to {0, k}.
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Our Results

Let T(f ) and B(f ) denote, respectively, the least common multiple and
the product of the length of the cycles of f . Harris (1973) proved that
logT converges in distribution to a standard normal distribution.
Schmutz (2011) gives asymptotic estimates for the expected value of T
and B over all mappings on n nodes.

We obtain the following results:

we give asymptotic estimates for the expected value of T and B over
{0, k}-mappings;

we prove that logT and logB converge in distribution to a standard
normal distribution, when properly centered and normalized;

we show that logB− logT converges in probability to zero, when
properly normalized;

we present theoretical and numerical results concerning the use of
{0, k}-mappings as heuristic models for {0, k}-polynomials.
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Part III

Cycles of {0, k}-Mappings
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Parameter T: Definition

Definition ( Parameter T )

If ϕ is a mapping, then T(ϕ) is the least common multiple of the length of
the cycles of ϕ.

Figure : The mapping ϕ(x) = x6 + 2 (mod 11) satisfies T(ϕ) = 2.
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Parameter T: Definition

Figure : LCM of the length of the cycles: T(ϕ) = 2.

Equivalent definitions for T:

1 Period of the sequence ϕ(m) = ϕ ◦ ϕ(m−1), m ≥ 1.

2 The least integer T ≥ 1 s.t. ϕ(m+T ) = ϕ(m) for all m ≥ m0.

3 Order of the permutation given by the cyclic nodes.
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Parameter T: Convergence to Gaussian Distribution

Theorem ( Convergence in distribution of logT )

For any fixed x ∈ R : lim
n→∞

Pn

[
logT− hn

bn
≤ x

]
=

1√
2π

∫ x

−∞
e−t

2/2dt,

where hn = (log2 n)/8 and bn = (log3/2 n)/
√

24.

B. Harris, The asymptotic distribution of the order of elements in symmetric semigroups,

Journal of Combinatorial Theory Series A, 1973.

Figure : Region with area A =

∫ x

−∞
e−t

2/2dt.
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Parameter T: Expected Value

Theorem (Convergence in distribution of logT)

For any fixed x ∈ R : lim
n→∞

Pn

[
logT− hn

bn
≤ x

]
=

1√
2π

∫ x

−∞
e−t

2/2dt,

where hn = (log2 n)/8 and bn = (log3/2 n)/
√

24.

B. Harris, The asymptotic distribution of the order of elements in symmetric semigroups,

Journal of Combinatorial Theory Series A, 1973.

Theorem ( Expected value of T )

En[T] = exp

(
k0

3

√
n

log2 n

(
1 + o(1)

))
, as n→∞.

where k0 ≈ 3.36.

Schmutz, E. Period lengths for iterated functions. Combinatorics, Probability and

Computing, 2011.
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Parameter B

Definition ( Parameter B )

If f is a mapping, then B(ϕ) is product of the length of the cycles of ϕ.

Figure : Product of the length of the cycles: B(ϕ) = 4.

Theorem ( Expected value of B )

En[B] = exp

(
3

2
3
√

n
(
1 + o(1)

))
, as n→∞.
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Our results: {0, k}-mappings modelling {0, k}-polynomials

Theorem (Schmutz 2011)

logEN
n [B] ∼ 3

2
· 3
√

n and logEN
n [T] ∼ k0 · 3

√
n · 1

log2/3 n

Theorem (Martins, Panario, Qureshi, Schmutz 2016)

logE{0,k}n [B] ∼ 3

2
· 3

√
n

λ
and logE{0,k}n [T] ∼ k0 · 3

√
n

λ
· 1

log2/3 n

Arney & Bender results:

Average rho length
of unrestricted mappings

EN
n [ρ]

n→∞∼
√
πn

2
.

Average rho length
of J -mappings

EJn [ρ]
n→∞∼

√
πn

2λ
.
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Our results: {0, k}-mappings modelling {0, k}-polynomials
Expected value of T for {0, k}-mappings:

Let E{0,k}n (T) be the expected value of T over the class of mappings
on n nodes with indegrees restricted to the set {0, k}, n = kr . Then,

logE{0,k}n (T) = k0
(n/λ)1/3

log2/3(n/λ)
(1 + o(1)),

as r approaches infinity, where λ = k − 1, k0 = 3
2 (3I )2/3 and

I =

∫ ∞
0

log log

(
e

1− e−t

)
dt.

Expected value of B for {0, k}-mappings:

Let E{0,k}n (B) be the expected value of B over the class of mappings
on n nodes with indegrees restricted to the set {0, k}, n = kr . Then,
as r approaches infinity and for λ = k − 1,

logE{0,k}n (B) =
3

2

(n

λ

)1/3
(1 + o(1)).
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Our results: {0, k}-mappings modelling {0, k}-polynomials

Convergence in distribution of logT for {0, k}-mappings:

Let k = k(r) and n = n(r) be sequences such that n = kr and, for
some 0 < α < 1, k = o(n1−α) as r approaches infinity. Let
µn = 1

2 log2(
√

n/λ) and σ2
n = 1

3 log3(
√

n/λ). Let T(f ) denote the
least common multiple of the length of the cycles of a mapping f
and, for r ≥ 1, let Xn be the random variable defined over the space
of {0, k}-mappings on n nodes as Xn = (logT− µn)/σn. Then, the
sequence defined by Xn converges in distribution to a standard normal
distribution.

In other words, for any real number x ,

P{0,k}n (logT ≤ µn + xσn) = φ(x) + ox(1),

as r approaches infinity, where the notation ox(·) indicates that the
error term depends on x . Moreover, if c is a positive constant, then
the convergence is uniform for |x | ≤ c

√
log n.
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Our results: {0, k}-mappings modelling {0, k}-polynomials

Convergence in distribution of logB for {0, k}-mappings:
similar results as for T above (statement skipped here).

B may be a good approximation for T:
Let k = k(r) and n = n(r) be sequences such that n = kr and, for
some 0 < α < 1, k = o(n1−α) as r approaches infinity. For r ≥ 1, let
χn be the random variable defined over {0, k}-mappings on n nodes
as χn = (logB− logT)/σn, where σn = 1√

3
log3/2(

√
n/λ). Then, the

sequence defined by χn converges in probability to zero. In other
words, for all ε > 0 we have, as r approaches infinity,

P{0,k}n (χn > ε) = o(1).

We also consider k = k(n) = o(n).

We have experiments on the parameters T and B.
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Sketch of a Proof

Let Ω
{0,k}
n be the set of {0, k}-mappings, Z = Z(f ) be the set of cyclic

nodes of a mapping f ∈ Ω
{0,k}
n and denote by Z = |Z|.

We index probabilities and expected values by the set of allowed indegrees
of the class of mappings in question: N in the general random case and

{0, k} in our case. We can write the expected value of T over Ω
{0,k}
n as

E{0,k}n [T] =
n∑

m=1

P{0,k}n [Z = m]E{0,k}n [T|Z = m]

=
n∑

m=1

P{0,k}n [Z = m]Mm

where Mm is the expected order of a random permutation of Sm.

Daniel Panario Dynamics of Mappings and Polynomials 33 / 38



Sketch of Proof (cont)

Lemma

If f is a {0, k}-mapping on n nodes, then n = kh for some h ≤ 1 and the
coalescence of a f is λ = λ(f ) = k − 1.

Indeed, since there are exactly h = n/k nodes with indegree k , the
coalescence of a {0, k}-mapping satisfies

λ =
n

k
· 1

n
· k2 − 1 = k − 1.

For P{0,k}n [Z = m] we use the following result:

Lemma (Rubin and Sitgreaves, 1953)

If λ = k − 1, then

P{0,k}n [Z = m] = λkm−1

(
h − 1

m − 1

)(
n − 1

m

)−1

.
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Sketch of Proof (cont)

For Mm, the expected order of a random uniform permutation, we use
classical results due to Erdös-Turan and others; we use a version with
improved error terms given in the next lemma.

Lemma (Stong 1998)

Let Mm be the expected order of a random permutation of Sm and let
β0 =

√
8I where

I =

∫ ∞
0

log log

(
e

1− et

)
dt.

Then,

log Mm = β0

√
m

log m
+ O

(√
m log log m

log m

)
.
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Sketch of Proof (cont)

Let m̂ be the integer that maximizes P{0,k}n [Z = m]Mm. We estimate the
expected value of T by noting that, for all m0 ∈ [1, n],

P{0,k}n [Z = m0]Mm0 ≤ E{0,k}n [T] ≤ nP{0,k}n [Z = m̂]Mm.

To study P{0,k}n [Z = m]Mm, we extend the binomials in Rubin and
Sitgreaves’s result using the Gamma function, and use Stong’s result to
finally consider the function

φn,ε(x) = λxkx−1 Γ(h)

Γ(h − x + 1)

Γ(n − x)

Γ(n)
exp

(
βε

√
x

log x

)
,

for n ≥ 1, −1 < ε < 1, φn,ε : (1, n)→ R and βε = β0 + ε.
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Sketch of Proof (cont)

We show that log φn,ε(x) has a unique maximum in (1, n) at

β2/3
ε

√
3

8

(n

λ

)2/3 1

log1/3 n
.

At that value, for kε = β
4/3
ε

35/3

23 , log φn,ε(x) takes the value

kε
(n

λ

)1/3 1

log2/3 n
(1 + o(1)).

With that we prove the main result:

E{0,k}n [T] = exp

(
k0

(n

λ

)1/3 1

log2/3 n
(1 + o(1))

)
,

where λ = k − 1 and k0 = (3I )2/33/2 = 3.36 . . ..
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Conclusions and Future Work

We give, for {0, k}-mappings, the expected value of the parameter T, the
lcm of the length of the cycles in {0, k}-mappings, and the parameter B,
the product of the length of the cycles. We give lognormality results for
these parameters, and study the difference logB− logT.

In addition, we also have results for k = k(n) = o(n); an algorithm for
generating uniform {0, k}-mappings; and some theoretical and
experimental results on the parameters for certan families of
{0, k}-polynomials.

Future work include extending these results to other type of J -mappings.
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