Sorting with C-machines:
 Enumerative and Analytic Aspects

Jay Pantone
Dartmouth College
Hanover, NH

BIRS Workshop in Analytic and Probabilistic Combinatorics

October 26, 2016

Permutations

A permutation of length n is viewed as an ordering of the integers $\{1, \ldots, n\}$.

Permutations

A permutation of length n is viewed as an ordering of the integers $\{1, \ldots, n\}$.

- Example: 63814725 is a permutation of length eight.

Permutations

A permutation of length n is viewed as an ordering of the integers $\{1, \ldots, n\}$.

- Example: 63814725 is a permutation of length eight.

Geometric interpretation: A permutation can be viewed as points in the plane, no two of which lie on the same horizontal or vertical line.

Permutations

A permutation of length n is viewed as an ordering of the integers $\{1, \ldots, n\}$.

- Example: 63814725 is a permutation of length eight.

Geometric interpretation: A permutation can be viewed as points in the plane, no two of which lie on the same horizontal or vertical line.

- Example: 63814725

Permutations

A permutation of length n is viewed as an ordering of the integers $\{1, \ldots, n\}$.

- Example: 63814725 is a permutation of length eight.

Geometric interpretation: A permutation can be viewed as points in the plane, no two of which lie on the same horizontal or vertical line.

- Example: 63814725

Permutations

A permutation of length n is viewed as an ordering of the integers $\{1, \ldots, n\}$.

- Example: 63814725 is a permutation of length eight.

Geometric interpretation: A permutation can be viewed as points in the plane, no two of which lie on the same horizontal or vertical line.

- Example: 63814725

Permutations

A permutation of length n is viewed as an ordering of the integers $\{1, \ldots, n\}$.

- Example: 63814725 is a permutation of length eight.

Geometric interpretation: A permutation can be viewed as points in the plane, no two of which lie on the same horizontal or vertical line.

- Example: 63814725

Permutations

A permutation of length n is viewed as an ordering of the integers $\{1, \ldots, n\}$.

- Example: 63814725 is a permutation of length eight.

Geometric interpretation: A permutation can be viewed as points in the plane, no two of which lie on the same horizontal or vertical line.

- Example: 63814725

Permutations

A permutation of length n is viewed as an ordering of the integers $\{1, \ldots, n\}$.

- Example: 63814725 is a permutation of length eight.

Geometric interpretation: A permutation can be viewed as points in the plane, no two of which lie on the same horizontal or vertical line.

- Example: 63814725

Permutations

A permutation of length n is viewed as an ordering of the integers $\{1, \ldots, n\}$.

- Example: 63814725 is a permutation of length eight.

Geometric interpretation: A permutation can be viewed as points in the plane, no two of which lie on the same horizontal or vertical line.

- Example: 63814725

Permutations

A permutation of length n is viewed as an ordering of the integers $\{1, \ldots, n\}$.

- Example: 63814725 is a permutation of length eight.

Geometric interpretation: A permutation can be viewed as points in the plane, no two of which lie on the same horizontal or vertical line.

- Example: 63814725

Permutations

A permutation of length n is viewed as an ordering of the integers $\{1, \ldots, n\}$.

- Example: 63814725 is a permutation of length eight.

Geometric interpretation: A permutation can be viewed as points in the plane, no two of which lie on the same horizontal or vertical line.

- Example: 63814725

Permutations

A permutation of length n is viewed as an ordering of the integers $\{1, \ldots, n\}$.

- Example: 63814725 is a permutation of length eight.

Geometric interpretation: A permutation can be viewed as points in the plane, no two of which lie on the same horizontal or vertical line.

- Example: 63814725

Pattern Containment

A permutation π contains a permutation σ (denoted $\sigma \leqslant \pi$) if you can delete dots in the picture of π and shrink the picture to get the picture of σ.

Pattern Containment

A permutation π contains a permutation σ (denoted $\sigma \leqslant \pi$) if you can delete dots in the picture of π and shrink the picture to get the picture of σ.

Pattern Containment

A permutation π contains a permutation σ (denoted $\sigma \leqslant \pi$) if you can delete dots in the picture of π and shrink the picture to get the picture of σ.

Pattern Containment

A permutation π contains a permutation σ (denoted $\sigma \leqslant \pi$) if you can delete dots in the picture of π and shrink the picture to get the picture of σ.

Pattern Containment

A permutation π contains a permutation σ (denoted $\sigma \leqslant \pi$) if you can delete dots in the picture of π and shrink the picture to get the picture of σ.
$1423 \leqslant 63814725$

Pattern Containment

A permutation π contains a permutation σ (denoted $\sigma \leqslant \pi)$ if you can delete dots in the picture of π and shrink the picture to get the picture of σ.
$1423 \leqslant 63814725$

Permutation Poset

\square

Permutation Poset

Permutation Poset

A permutation class is a downset in the permutation poset. In other words, if π is in the class \mathcal{C} and $\sigma \leqslant \pi$, then we must have $\sigma \in \mathcal{C}$.

Permutation Poset

A permutation class is a downset in the permutation poset. In other words, if π is in the class \mathcal{C} and $\sigma \leqslant \pi$, then we must have $\sigma \in \mathcal{C}$.

A class can be specified by the set of minimal permutations not in the class, called its basis.

Permutation Poset

A permutation class is a downset in the permutation poset. In other words, if π is in the class \mathcal{C} and $\sigma \leqslant \pi$, then we must have $\sigma \in \mathcal{C}$.

A class can be specified by the set of minimal permutations not in the class, called its basis.

The class with basis B is denoted $\operatorname{Av}(B)$.

Permutation Poset

$\vdots \begin{array}{lllllllllllllllllll} & \vdots \\ \vdots & \vdots\end{array}$ 123412431324134214231432213421432314234124132431312431423214324134123421412341324213423143124321

Permutation Poset

Permutation Poset

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

output $\quad 2175346$
input

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

output 2	175346

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

$l 2$	
output	5 7 7

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

$l \mid l$	
output	4
	5
7	input

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Sorting with a Stack

The permutation 2175346 can be sorted by a stack.

Not all permutations can be sorted by a stack.

Permutations containing 231 cannot be sorted by a stack. In fact, the permutations that are stack-sortable are exactly those in $\operatorname{Av}(231)$.

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

21	567 outputinput 3

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

21	
output	5 4 3

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

The permutations that can be generated by a stack are exactly the inverses of those that can be sorted by a stack.

Generating with a Stack

The permutation 2156473 can be generated by a stack.

(Notice the stack always holds a decreasing subpermutation when read top to bottom.)

The permutations that can be generated by a stack are exactly the inverses of those that can be sorted by a stack.

A stack can generate the permutations in $\operatorname{Av}\left(231^{-1}\right)=\operatorname{Av}(312)$.

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

21

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

43

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

543

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

43

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

643

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

43

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

73

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

Generalizing Stacks

The stack can be thought of as a container that always holds a decreasing permutation, where at any time we can:

- push a new maximum entry into the container such that the container holds a decreasing permutation
- pop the leftmost entry out of the container.

Since the container holds permutations that avoid the pattern 12 , we call this the $\operatorname{Av}(12)$-machine.

Generalizing Stacks

We allow a third operation: an entry can bypass the container and move straight from the input to the output.

Generalizing Stacks

We allow a third operation: an entry can bypass the container and move straight from the input to the output.

In the $\operatorname{Av}(12)$-machine, we didn't need the bypass because we could just push and then immediately pop.

Generalizing Stacks

We allow a third operation: an entry can bypass the container and move straight from the input to the output.

In the $\operatorname{Av}(12)$-machine, we didn't need the bypass because we could just push and then immediately pop.

Generalizing Stacks

We allow a third operation: an entry can bypass the container and move straight from the input to the output.

In the $\operatorname{Av}(12)$-machine, we didn't need the bypass because we could just push and then immediately pop.

Generalizing Stacks

We allow a third operation: an entry can bypass the container and move straight from the input to the output.

In the $\operatorname{Av}(12)$-machine, we didn't need the bypass because we could just push and then immediately pop.

12

Generalizing Stacks

We allow a third operation: an entry can bypass the container and move straight from the input to the output.

In the $\operatorname{Av}(12)$-machine, we didn't need the bypass because we could just push and then immediately pop.

12

Generalizing Stacks

We allow a third operation: an entry can bypass the container and move straight from the input to the output.

In the $\operatorname{Av}(12)$-machine, we didn't need the bypass because we could just push and then immediately pop.

2

Generalizing Stacks

We allow a third operation: an entry can bypass the container and move straight from the input to the output.

In the $\operatorname{Av}(12)$-machine, we didn't need the bypass because we could just push and then immediately pop.

24

Generalizing Stacks

We allow a third operation: an entry can bypass the container and move straight from the input to the output.

In the $\operatorname{Av}(12)$-machine, we didn't need the bypass because we could just push and then immediately pop.

24

Generalizing Stacks

We allow a third operation: an entry can bypass the container and move straight from the input to the output.

In the $\operatorname{Av}(12)$-machine, we didn't need the bypass because we could just push and then immediately pop.

Generalizing Stacks

We allow a third operation: an entry can bypass the container and move straight from the input to the output.

In the $\operatorname{Av}(12)$-machine, we didn't need the bypass because we could just push and then immediately pop.

Generalizing Stacks

We allow a third operation: an entry can bypass the container and move straight from the input to the output.

In the $\operatorname{Av}(12)$-machine, we didn't need the bypass because we could just push and then immediately pop.

The Av(21)-machine generates the class $\operatorname{Av}(321)$.

Example: The $\operatorname{Av}(231,132)$-Machine

Whenever the machine is nonempty, there are always two places to push a new entry.

Example: The $\operatorname{Av}(231,132)$-Machine

Whenever the machine is nonempty, there are always two places to push a new entry.

Example: The $\operatorname{Av}(231,132)$-Machine

Whenever the machine is nonempty, there are always two places to push a new entry.

Example: The $\operatorname{Av}(231,132)$-Machine

Whenever the machine is nonempty, there are always two places to push a new entry.

Example: The $\operatorname{Av}(231,132)$-Machine

Whenever the machine is nonempty, there are always two places to push a new entry.

Example: The $\operatorname{Av}(231,132)$-Machine

Whenever the machine is nonempty, there are always two places to push a new entry.

Example: The $\operatorname{Av}(231,132)$-Machine

Whenever the machine is nonempty, there are always two places to push a new entry.

Example: The $\operatorname{Av}(231,132)$-Machine

Whenever the machine is nonempty, there are always two places to push a new entry.

Example: The $\operatorname{Av}(231,132)$-Machine

Whenever the machine is nonempty, there are always two places to push a new entry.

Example: The $\operatorname{Av}(231,132)$-Machine

Whenever the machine is nonempty, there are always two places to push a new entry.

Example: The $\operatorname{Av}(231,132)$-Machine

Whenever the machine is nonempty, there are always two places to push a new entry.

Example: The $\operatorname{Av}(231,132)$-Machine

Whenever the machine is nonempty, there are always two places to push a new entry.

The Basis Theorem

- The $\operatorname{Av}(12)$-machine generates the class $\operatorname{Av}(312)$.

The Basis Theorem

- The $\operatorname{Av}(12)$-machine generates the class $\operatorname{Av}(312)$.
- The $\operatorname{Av}(21)$-machine generates the class $\operatorname{Av}(321)$.

The Basis Theorem

- The $\operatorname{Av}(12)$-machine generates the class $\operatorname{Av}(312)$.
- The $\operatorname{Av}(21)$-machine generates the class $\operatorname{Av}(321)$.

Theorem. The $\operatorname{Av}(\mathrm{B})$-machine generates the class

$$
\operatorname{Av}\left(\left\{^{+} \beta: \beta \in B\right\}\right),
$$

where ${ }^{+} \beta$ is formed by adding a new maximum in front of β.

The Basis Theorem

- The $\operatorname{Av}(12)$-machine generates the class $\operatorname{Av}(312)$.
- The $\operatorname{Av}(21)$-machine generates the class $\operatorname{Av}(321)$.

Theorem. The $\operatorname{Av}(\mathrm{B})$-machine generates the class

$$
\operatorname{Av}\left(\left\{^{+} \beta: \beta \in B\right\}\right),
$$

where ${ }^{+} \beta$ is formed by adding a new maximum in front of β.
Example: The $\operatorname{Av}(123,4132)$-machine generates the class Av $(4123,54132)$.

Enumerating $\operatorname{Av}(312)$ via the $\operatorname{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Enumerating Av (312) via the $\operatorname{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

Enumerating $\operatorname{Av}(312)$ via the $\operatorname{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

Enumerating Av (312) via the $\mathrm{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

u

Enumerating Av (312) via the $\operatorname{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

Enumerating Av (312) via the $\mathrm{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

Enumerating Av (312) via the $\operatorname{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

Enumerating Av (312) via the $\operatorname{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

Enumerating Av (312) via the $\mathrm{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

Enumerating Av (312) via the $\mathrm{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

Enumerating Av (312) via the $\mathrm{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

Enumerating Av (312) via the $\mathrm{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

$$
\frac{215}{\text { output }} \longleftarrow \frac{7}{\text { input }}
$$

Enumerating Av (312) via the $\mathrm{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

Enumerating Av (312) via the $\operatorname{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

Enumerating Av (312) via the $\operatorname{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

Enumerating Av (312) via the $\operatorname{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

Enumerating Av (312) via the $\operatorname{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

States with no entries in the machine are those with no u term.

Enumerating Av (312) via the $\operatorname{Av}(12)$-Machine

The operation sequence of the $\operatorname{Av}(12)$-machine makes it easy to find the generating function for $\operatorname{Av}(312)$.

Let $f(x, u)$ be the generating function for valid states of the $\operatorname{Av}(12)$-machine where u tracks the number of entries in the machine and x tracks the number that have been output so far.

States with no entries in the machine are those with no u term.
Hence the generating function for these states is $f(x, 0)$.

Enumerating Av (312) via the $\mathrm{Av}(12)$-Machine

Every machine state arises either:

Enumerating $\operatorname{Av}(312)$ via the $\operatorname{Av}(12)-\mathrm{Machine}$

Every machine state arises either:

- as the start state

Enumerating $\operatorname{Av}(312)$ via the $\operatorname{Av}(12)-\mathrm{Machine}$

Every machine state arises either:

- as the start state
- from pushing an entry into a previous state

Enumerating Av(312) via the Av(12)-Machine

Every machine state arises either:

- as the start state
- from pushing an entry into a previous state
- from popping an entry from a nonempty state

Enumerating $\operatorname{Av}(312)$ via the $\operatorname{Av}(12)$-Machine

Every machine state arises either:

- as the start state
- from pushing an entry into a previous state
- from popping an entry from a nonempty state

This translates to a functional equation:

$$
f(x, u)=1+u f(x, u)+\frac{x}{u}(f(x, u)-f(x, 0))
$$

Enumerating $\operatorname{Av}(312)$ via the $\operatorname{Av}(12)$-Machine

Every machine state arises either:

- as the start state
- from pushing an entry into a previous state
- from popping an entry from a nonempty state

This translates to a functional equation:

$$
f(x, u)=1+u f(x, u)+\frac{x}{u}(f(x, u)-f(x, 0))
$$

Enumerating $\operatorname{Av}(312)$ via the $\operatorname{Av}(12)$-Machine

Every machine state arises either:

- as the start state
- from pushing an entry into a previous state
- from popping an entry from a nonempty state

This translates to a functional equation:

$$
f(x, u)=1+u f(x, u)+\frac{x}{u}(f(x, u)-f(x, 0))
$$

Enumerating $\operatorname{Av}(312)$ via the $\operatorname{Av}(12)$-Machine

Every machine state arises either:

- as the start state
- from pushing an entry into a previous state
- from popping an entry from a nonempty state

This translates to a functional equation:

$$
f(x, u)=1+u f(x, u)+\frac{x}{u}(f(x, u)-f(x, 0))
$$

Enumerating $\operatorname{Av}(312)$ via the $\operatorname{Av}(12)$-Machine

Every machine state arises either:

- as the start state
- from pushing an entry into a previous state
- from popping an entry from a nonempty state

This translates to a functional equation:

$$
f(x, u)=1+u f(x, u)+\frac{x}{u}(f(x, u)-f(x, 0))
$$

Enumerating $\operatorname{Av}(312)$ via the $\operatorname{Av}(12)$-Machine

Every machine state arises either:

- as the start state
- from pushing an entry into a previous state
- from popping an entry from a nonempty state

This translates to a functional equation:

$$
f(x, u)=1+u f(x, u)+\frac{x}{u}(f(x, u)-f(x, 0))
$$

The kernel method shows that $\mathrm{f}(x, 0)=\frac{1-\sqrt{1-4 x}}{2 x}$.

Enumerating Av (312) via the $\operatorname{Av}(12)$-Machine

Every machine state arises either:

- as the start state
- from pushing an entry into a previous state
- from popping an entry from a nonempty state

This translates to a functional equation:

$$
f(x, u)=1+u f(x, u)+\frac{x}{u}(f(x, u)-f(x, 0))
$$

The kernel method shows that $f(x, 0)=\frac{1-\sqrt{1-4 \chi}}{2 x}$.
(There are some uniqueness issues I'm sweeping under the rug.)

2×4 Classes

There are 56 essentially different classes of permutations that avoid two patterns of length 4.

2×4 Classes

There are 56 essentially different classes of permutations that avoid two patterns of length 4.

Enumerations are known for all but three:

- $\operatorname{Av}(4123,4231)$
- $\operatorname{Av}(4123,4312)$
- $\operatorname{Av}(4231,4321)$

2×4 Classes

There are 56 essentially different classes of permutations that avoid two patterns of length 4.

Enumerations are known for all but three:

- $\operatorname{Av}(4123,4231)$
- $\operatorname{Av}(4123,4312)$
- $\operatorname{Av}(4231,4321)$

These three can all be modeled with \mathcal{C}-machines.

$\operatorname{Av}(4123,4231)$

$\operatorname{Av}(4123,4231)$ is generated by the $\operatorname{Av}(123,231)$-machine.
The class $\operatorname{Av}(123,231)$ is a geometric grid class.

$\operatorname{Av}(4123,4231)$

$\operatorname{Av}(4123,4231)$ is generated by the $\operatorname{Av}(123,231)$-machine.
The class $\operatorname{Av}(123,231)$ is a geometric grid class.

$\operatorname{Av}(4123,4231)$

$\operatorname{Av}(4123,4231)$ is generated by the $\operatorname{Av}(123,231)$-machine.
The class $\operatorname{Av}(123,231)$ is a geometric grid class.

The states of the machine can be represented by 4 -tuples (a, b, c, P) where a, b, and c are the number of a, b, c entries, and P is a boolean representing whether we can or can't pop.

$\operatorname{Av}(4123,4231)$

We can describe the state transitions:

$\operatorname{Av}(4123,4231)$

We can describe the state transitions:

- $(0,0,0, T) \longrightarrow\{(1,0,0, F),(0,0,0, T)\}$

$\operatorname{Av}(4123,4231)$

We can describe the state transitions:

- $(0,0,0, T) \longrightarrow\{(1,0,0, F),(0,0,0, T)\}$
- $(a, 0,0, F) \longrightarrow\{(a+1,0,0, F),(a, 1,0, F),(a, 0,0, T)\}$

$\operatorname{Av}(4123,4231)$

We can describe the state transitions:

- $(0,0,0, T) \longrightarrow\{(1,0,0, F),(0,0,0, T)\}$
- $(a, 0,0, F) \longrightarrow\{(a+1,0,0, F),(a, 1,0, F),(a, 0,0, T)\}$
- $(a, 0,0, T) \longrightarrow\{(a+1,0,0, F),(a, 1,0, F),(a, 0,0, T),(a-1,0,0, T)\}$

$\operatorname{Av}(4123,4231)$

We can describe the state transitions:

- $(0,0,0, T) \longrightarrow\{(1,0,0, F),(0,0,0, T)\}$
- $(a, 0,0, F) \longrightarrow\{(a+1,0,0, F),(a, 1,0, F),(a, 0,0, T)\}$
- $(a, 0,0, T) \longrightarrow\{(a+1,0,0, F),(a, 1,0, F),(a, 0,0, T),(a-1,0,0, T)\}$
- $(a, b, 0, F) \longrightarrow\{(a, b+1,0, F),(a, b, 1, F),(a, b, 0, T)\}$

$\operatorname{Av}(4123,4231)$

We can describe the state transitions:

- $(0,0,0, T) \longrightarrow\{(1,0,0, F),(0,0,0, T)\}$
- $(a, 0,0, F) \longrightarrow\{(a+1,0,0, F),(a, 1,0, F),(a, 0,0, T)\}$
- $(a, 0,0, T) \longrightarrow\{(a+1,0,0, F),(a, 1,0, F),(a, 0,0, T),(a-1,0,0, T)\}$
- $(a, b, 0, F) \longrightarrow\{(a, b+1,0, F),(a, b, 1, F),(a, b, 0, T)\}$
- $(a, b, 0, T) \longrightarrow\{(a, b+1,0, F),(a, b, 1, F),(a, b, 0, T),(a-1, b, 0, T)\}$, $(a \geqslant 2)$

$\operatorname{Av}(4123,4231)$

We can describe the state transitions:

- $(0,0,0, T) \longrightarrow\{(1,0,0, F),(0,0,0, T)\}$
- $(a, 0,0, F) \longrightarrow\{(a+1,0,0, F),(a, 1,0, F),(a, 0,0, T)\}$
- $(a, 0,0, T) \longrightarrow\{(a+1,0,0, F),(a, 1,0, F),(a, 0,0, T),(a-1,0,0, T)\}$
- $(a, b, 0, F) \longrightarrow\{(a, b+1,0, F),(a, b, 1, F),(a, b, 0, T)\}$
- $(a, b, 0, T) \longrightarrow\{(a, b+1,0, F),(a, b, 1, F),(a, b, 0, T),(a-1, b, 0, T)\}$, $(a \geqslant 2)$
- $(1, b, 0, T) \longrightarrow\{(1, b+1,0, F),(1, b, 1, F),(1, b, 0, T),(b, 0,0, T)\}$

$\operatorname{Av}(4123,4231)$

We can describe the state transitions:

- $(0,0,0, T) \longrightarrow\{(1,0,0, F),(0,0,0, T)\}$
- $(a, 0,0, F) \longrightarrow\{(a+1,0,0, F),(a, 1,0, F),(a, 0,0, T)\}$
- $(a, 0,0, T) \longrightarrow\{(a+1,0,0, F),(a, 1,0, F),(a, 0,0, T),(a-1,0,0, T)\}$
- $(a, b, 0, F) \longrightarrow\{(a, b+1,0, F),(a, b, 1, F),(a, b, 0, T)\}$
- $(a, b, 0, T) \longrightarrow\{(a, b+1,0, F),(a, b, 1, F),(a, b, 0, T),(a-1, b, 0, T)\}$, $(a \geqslant 2)$
- $(1, b, 0, T) \longrightarrow\{(1, b+1,0, F),(1, b, 1, F),(1, b, 0, T),(b, 0,0, T)\}$
- $(a, b, c, F) \longrightarrow\{(a, b, c+1, F),(a, b, c, T)\}$

$\operatorname{Av}(4123,4231)$

We can describe the state transitions:

- $(0,0,0, T) \longrightarrow\{(1,0,0, F),(0,0,0, T)\}$
- $(a, 0,0, F) \longrightarrow\{(a+1,0,0, F),(a, 1,0, F),(a, 0,0, T)\}$
- $(a, 0,0, T) \longrightarrow\{(a+1,0,0, F),(a, 1,0, F),(a, 0,0, T),(a-1,0,0, T)\}$
- $(a, b, 0, F) \longrightarrow\{(a, b+1,0, F),(a, b, 1, F),(a, b, 0, T)\}$
- $(a, b, 0, T) \longrightarrow\{(a, b+1,0, F),(a, b, 1, F),(a, b, 0, T),(a-1, b, 0, T)\}$, $(a \geqslant 2)$
- $(1, b, 0, T) \longrightarrow\{(1, b+1,0, F),(1, b, 1, F),(1, b, 0, T),(b, 0,0, T)\}$
- $(a, b, c, F) \longrightarrow\{(a, b, c+1, F),(a, b, c, T)\}$
- $(a, b, c, T) \longrightarrow\{(a, b, c+1, F),(a, b, c, T),(a, b, c-1, T)\}$

$\operatorname{Av}(4123,4231)$

With a little work, we can translate the state transitions into a set of functional equations:

$$
\begin{gathered}
A(a, x)=1+\frac{x}{a}(A(a, x)-A(0, x))+a A(a, x)+x B(0, a, x), \\
B(a, b, x)=\frac{1}{a}(A(a, x)-A(0, x)) \frac{b C}{1-b}+B(a, b, x) \frac{b C}{1-b} \\
+\frac{x}{a}(1+C)(B(a, b, x)-B(0, b, x)) .
\end{gathered}
$$

(C is the generating function for the Catalan numbers.)

$\operatorname{Av}(4123,4231)$

With a little work, we can translate the state transitions into a set of functional equations:

$$
\begin{gathered}
A(a, x)=1+\frac{x}{a}(A(a, x)-A(0, x))+a A(a, x)+x B(0, a, x), \\
B(a, b, x)=\frac{1}{a}(A(a, x)-A(0, x)) \frac{b C}{1-b}+B(a, b, x) \frac{b C}{1-b} \\
+\frac{x}{a}(1+C)(B(a, b, x)-B(0, b, x)) .
\end{gathered}
$$

(C is the generating function for the Catalan numbers.)
The generating function for the class is $A(0, x)$, but we have no idea how to solve these equations.

$\operatorname{Av}(4123,4312)$

$$
\begin{aligned}
A(a, x)= & 1+\frac{x}{a}(A(a, x)-A(0, x))+a A(a, x)+x B(a, 0, a, x) \\
B(a, b, c, x)= & \frac{c x}{(1-c)(1-x)}\left(\frac{A(a, x)-A(b, x)}{a-b}\right)+\frac{c x}{(1-c)(1-x)} B(a, b, c, x) \\
& +\frac{x}{b(1-x)}(B(a, b, c, x)-B(a, 0, c, x))
\end{aligned}
$$

$\operatorname{Av}(4231,4321)$

$$
\begin{aligned}
A_{p}= & 1+x\left(A_{p}(a, x)+A_{n}(a, x)\right)+\frac{x}{a}\left(A_{p}(a, x)-A_{p}(0, x)\right)+\frac{x}{a} B_{p}(a, a, 0, x) \\
A_{n}= & a\left(A_{p}(a, x)+A_{n}(a, x)\right) \\
B_{p}= & x\left(B_{p}(a, b, c, x)+B_{n}(a, b, c, x)\right)+\frac{x}{c}\left(B_{p}(a, b, c, x)-B_{p}(a, b, 0, x)\right) \\
B_{n}= & a\left(B_{p}(a, b, c, x)+B_{n}(a, b, c, x)\right)+\frac{b^{2}}{c-b}\left(\left(A_{p}(c, x)-A_{p}(b, x)\right)\right. \\
& \left.+\left(A_{n}(c, x)-A_{n}(b, x)\right)\right) \frac{b^{2}}{c-b}\left(\left(B_{p}(c, c, c, x)-B_{p}(b, c, c, x)\right)\right. \\
& \left.++\left(B_{n}(c, c, c, x)-B_{n}(b, c, c, x)\right)\right)
\end{aligned}
$$

Initial terms

Although we don't know how to solve these functional equations, they can be used to obtain many initial terms of each sequence. (Between 600 and 5000 terms. Probably more are possible.)

INITIAL TERMS

Although we don't know how to solve these functional equations, they can be used to obtain many initial terms of each sequence. (Between 600 and 5000 terms. Probably more are possible.)

We can use two tools to analyze these terms:

- Automated Guessing
- The Method of Differential Approximants

Quick Detour: 2-Colorable Matchings

To illustrate the power of these two methods, consider the class of 2-colorable matchings.

I've computed 1500 terms of this sequence, but the generating function is still unknown.

Quick Detour: 2-Colorable Matchings

To illustrate the power of these two methods, consider the class of 2-colorable matchings.

I've computed 1500 terms of this sequence, but the generating function is still unknown.

Quick Detour: 2-Colorable Matchings

To illustrate the power of these two methods, consider the class of 2-colorable matchings.

I've computed 1500 terms of this sequence, but the generating function is still unknown.

Quick Detour: 2-Colorable Matchings

Using a few hundred terms, automated guessing says the generating function $\mathrm{F}(z)$ satisfies the algebraic differential equation

$$
\begin{aligned}
0= & (-8+12 z) \mathrm{F}(z)^{7}+(-12 z+20) \mathrm{F}(z)^{6}+(3 z-18) \mathrm{F}(z)^{5}-\mathrm{F}(z)^{3}-8 z^{3} \mathrm{~F}^{\prime}(z)^{3}+7 \mathrm{~F}(z)^{4} \\
& -12 z^{2} \mathrm{~F}(z) \mathrm{F}^{\prime}(z)^{2}+6 z(3 z-10) \mathrm{F}(z)^{4} \mathrm{~F}^{\prime}(z)+z^{2} \mathrm{~F}(z)^{3} \mathrm{~F}^{\prime \prime}(z) / 2+6 z^{3}(4 z-3) \mathrm{F}(z)^{2} \mathrm{~F}^{\prime}(z)^{3} \\
& -8 z^{2}(8 z-3) \mathrm{F}(z)^{4} \mathrm{~F}^{\prime}(z)^{2}+32 z \mathrm{~F}(z)^{3} \mathrm{~F}^{\prime}(z)+4 z^{2}(4 z-1) \mathrm{F}(z)^{6} \mathrm{~F}^{\prime \prime}(z) \\
& -12 z(5 z-4) \mathrm{F}(z)^{5} \mathrm{~F}^{\prime}(z)-2 z^{2}(4 z-3) \mathrm{F}(z)^{5} \mathrm{~F}^{\prime \prime}(z)+16 z(3 z-1) \mathrm{F}^{\prime}(z)^{6} \mathrm{~F}^{\prime}(z) \\
& -6 z \mathrm{~F}(z)^{2} \mathrm{~F}^{\prime}(z)+42 z^{2} \mathrm{~F}(z)^{2} \mathrm{~F}^{\prime}(z)^{2}+12 z^{2}(3 z-4) \mathrm{F}(z)^{3} \mathrm{~F}^{\prime}(z)^{2}-8 z^{3}(4 z-1) \mathrm{F}(z)^{3} \mathrm{~F}^{\prime}(z)^{3} \\
& +15 z^{3} \mathrm{~F}(z) \mathrm{F}^{\prime}(z)^{3}-3 z^{2} \mathrm{~F}(z)^{4} \mathrm{~F}^{\prime \prime}(z)
\end{aligned}
$$

Quick Detour: 2-Colorable Matchings

The method of differential approximants predicts that $F(z)$ has singularities at:

Quick Detour: 2-Colorable Matchings

The method of differential approximants predicts that $F(z)$ has singularities at:

1. $z=0.07490791222594518 \pm 10^{-17}$

Quick Detour: 2-Colorable Matchings

The method of differential approximants predicts that $F(z)$ has singularities at:

1. $z=0.07490791222594518 \pm 10^{-17}$

Growth rate $\approx 13.349724618992102$

Quick Detour: 2-Colorable Matchings

The method of differential approximants predicts that $F(z)$ has singularities at:

1. $z=0.07490791222594518 \pm 10^{-17}$

Growth rate $\approx 13.349724618992102$
2. $z=-2.88202477916 \pm 10^{-11}$

Quick Detour: 2-Colorable Matchings

The method of differential approximants predicts that $F(z)$ has singularities at:

1. $z=0.07490791222594518 \pm 10^{-17}$

Growth rate $\approx 13.349724618992102$
2. $z=-2.88202477916 \pm 10^{-11}$
$\left(=-\frac{256}{9 \pi^{2}}=-2.8820247791598 \ldots\right)$.

Back to the Three Unknown Permutation Classes

Applying the method of automated guessing to our three sequences:

Back to the Three Unknown Permutation Classes

Applying the method of automated guessing to our three sequences:

- $\operatorname{Av}(4123,4231), 1000$ terms, no results

Back to the Three Unknown Permutation Classes

Applying the method of automated guessing to our three sequences:

- $\operatorname{Av}(4123,4231), 1000$ terms, no results
- $\operatorname{Av}(4123,4312), 1000$ terms, no results

Back to the Three Unknown Permutation Classes

Applying the method of automated guessing to our three sequences:

- $\operatorname{Av}(4123,4231), 1000$ terms, no results
- $\operatorname{Av}(4123,4312), 1000$ terms, no results
- $\operatorname{Av}(4231,4321), 600$ terms, no results

Back to the Three Unknown Permutation Classes

Applying the method of automated guessing to our three sequences:

- $\operatorname{Av}(4123,4231), 1000$ terms, no results
- $\operatorname{Av}(4123,4312), 1000$ terms, no results
- $\operatorname{Av}(4231,4321), 600$ terms, no results

Conjecture. The generating functions for these three permutation classes are non-differentially-algebraic.

$\operatorname{Av}(4123,4231)$

Dominant singularity at
$x=0.20092861430290850630066749465511761874842136315274588937508575345652139 \pm 10^{-71}$

$\operatorname{Av}(4123,4231)$

Dominant singularity at
$x=0.20092861430290850630066749465511761874842136315274588937508575345652139 \pm 10^{-71}$

Other singularities:

- $x=0.20614664458929271159698558840 \pm 10^{-29}$
- $\mathrm{x}=0.20724531832263 \pm 10^{-14}$
- $x=0.24870945696 \pm 0.00390217832 i \pm(1+i) 10^{-11}$

$\operatorname{Av}(4123,4312)$

Dominant singularity at
$x=0.1715728752538099023966225515806038428606562492461038536466405240185 \ldots$
$\ldots 3504307578592229922493134471685452997230753817540595015032 \pm 10^{-125}=3-2 \sqrt{2}$

$\operatorname{Av}(4123,4312)$

Dominant singularity at
$x=0.1715728752538099023966225515806038428606562492461038536466405240185 \ldots$
$\ldots 3504307578592229922493134471685452997230753817540595015032 \pm 10^{-125}=3-2 \sqrt{2}$

Other singularities:

- $\mathrm{x}=0.1597726221747308831 \pm 10^{-19}$
- $x=0.2439516153417787 \pm 0.1200274949895230 i \pm(1+\mathfrak{i}) 10^{-16}$
- $x=0.643104131 \pm 10^{-9}$

$\operatorname{Av}(4231,4321)$

Dominant singularity at
$x=0.16970755392927711099361272283380722225065601529439005733 \ldots$
$\ldots 3192350433804002842072267740380 \pm 10^{-93}$

$\operatorname{Av}(4231,4321)$

Dominant singularity at
$x=0.16970755392927711099361272283380722225065601529439005733 \ldots$

$$
\ldots 3192350433804002842072267740380 \pm 10^{-93}
$$

Other singularities:

- $x=.171572875253809902396622551580603842 \ldots \pm 10^{-70}$
- $x=0.167216154 \ldots \pm 0.004184699 \ldots i \pm(1+\mathfrak{i}) 10^{-37}$
- $x=0.1666666666666666666666666666666666666 \pm 10^{-37}$
- $x=0.14589803375031545 \pm 10^{-17}$
- $x=0.241270585132 \pm 0.024119881572 i \pm(1+i) 10^{-12}$
- ...

One More Epsilon of Information

Random Sampling!

$\operatorname{Av}(4123,4231)$

$\operatorname{Av}(4123,4312)$

$\operatorname{Av}(4231,4321)$

Thanks!

