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What is our subject?

Asymptotic enumeration
or

Probabilistic combinatorics?
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What is our subject?

Asymptotic enumeration
AND

Probabilistic combinatorics!
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What is our subject?

Exact enumeration!
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Binary trees and exact enumeration
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Figure: Leaves labelled left to right
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Theorem

The expectation En,j of the height of the leaf with label j in a
binary tree of size n, is given by

En,j =
2(2j + 1)(2n − 2j + 1)

n + 2

(2j
j

)(2n−2j
n−j

)(2n
n

) for 0 ≤ j ≤ n .

(1)
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Binary trees and exact enumeration
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Figure: Nodes labelled via inorder traversal
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Binary trees and exact enumeration

Theorem

The expectation En,j of the number of descendants of the node
with label j , where the nodes are labelled by inorder traversal, in a
binary tree of size n, is given by

En,j =
n + 1

4

(2j
j

)(2(n+1−j)
n+1−j

)(2n
n

) for 1 ≤ j ≤ n

Many more results of this style are available (together with Alois
Panholzer).
Trivariate generating functions and Zeilberger’s algorithm.
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Preorder
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Postorder
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Lattice paths also belong to tree enumeration!

Figure: A planar tree with 8 nodes (=7 edges) and the corresponding
Dyck path of length 14 (=semi-length 7)
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Dyck like paths

Upsteps +1, downsteps −2
(in general −(t − 1))

· · ·
· · ·

· · ·

T1 T2 T3

Figure: The decomposition of generalized Dyck paths leading
(recursively) to a ternary tree with subtrees T1,T2,T3.
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Returns and hills
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Figure: A ternary tree with 10 (internal) nodes. It has 6 returns and 3
hills.
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explicit!

Explicit forms of bivariate generating functions are available, and
results about the limiting distribution (negative binomial
distribution)
Solving an open question.
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Quickselect

Permutation 2 1 9 6 7 3 8 4 5 10 Pivot is 2

2

1 9 6 7 3 8 4 5 10
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Quickselect

2

1 9

5 6 7 3 8 4 10
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Quickselect
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Quickselect
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Quickselect

If one only wants the find the jth ranked element (which is j , since
we assume that the elements in question are {1, 2, . . . , n}), one
uses the same partitioning strategy as in Quicksort, but follows
only the path which contains the sought element.
This is the same as to say that one goes down recursively in only
one subfile. This procedure is called Hoare’s Find algorithm.
Knuth has already computed the average number of comparisons
Cn,j . For this, it is assumed that every permutation of {1, 2, . . . , n}
is equally likely, and that the partitioning phase needs n − 1
comparisons. Then there is the recursion

Cn,j = n − 1 +
1

n

∑
1≤k<j

Cn−k,j−k +
1

n

∑
j<k≤n

Ck−1,j .

The solution is

Cn,j = 2
(
n + 3 + (n + 1)Hn − (j + 2)Hj − (n + 3− j)Hn+1−j

)
.
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Quickselect: Second factorial moment (comparisons)

Mn,j = −2(n + 1)(n + 6)H2
n

− 8Hn

(
jHj + (n + 1 − j)Hn+1−j

)
+ 4

−(3n2 + 8n + 1)j2 + (n + 1)(3n2 + 8n + 1)j + 4(n + 1)

j(n + 1 − j)
Hn

+ 2(j + 8)(j + 1)H2
j + 2(n + 9 − j)(n + 2 − j)H2

n+1−j

+ 4
(
− j2 + (n + 1)j − n2 − n + 4

)
Hj Hn+1−j

−
2

j(n + 1 − j)

(
− 2(3n + 7)j3 + (6n2 + 14n + 13)j2 + (n + 1)(6n + 1)j + 8(n + 1)

)
Hj

−
2

j(n + 1 − j)

(
2(3n + 7)j3 − (12n2 + 46n + 29)j2

+ (n + 1)(6n2 + 26n + 15)j + 8(n + 1)
)
Hn+1−j

+ 2(n + 1)(n + 6)H(2)
n

− 2(j2 + 5j + 8)H
(2)
j − 2(j2 − (2n + 7)j + n2 + 7n + 14)H

(2)
n+1−j

+
10j4 − 20(n + 1)j3 + (n2 − 13n − 66)j2 + (9n2 + 33n + 76)(n + 1)j + 32

2j(n + 1 − j)

+ 4n

(
(n + 1 − j)

j∑
k=1

Hn−k

k
+ j

n+1−j∑
k=1

Hn−k

k

)
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Digital search trees
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Digital search trees: path length

Folklore: the average path length:

n∑
k=2

(
n

k

)
(−1)kQk−2

with

Qk =
(

1− 1

2

)(
1− 1

4

)
. . .
(

1− 1

2k

)
(x ; q)n = (1− x)(1− xq) . . . (1− xqn−1)
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Digital search trees

lN = N −
N∑

k=2

(
N

k

)
(−1)kRk−2

with

RN = QN

N∑
k=0

1

Qk

Asymptotic evaluation
P.Flajolet and R.Sedgewick, Digital Search Trees Revisited, SIAM
J. Computing, 1986 748–767
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Digital search trees: external internal nodes

External internal nodes in digital search trees via Mellin transforms.
H. Prodinger, SIAM Journal on Computing, 21:1180–1183, 1992.
Improved constant: nicer, fast convergent series:

N

Q∞

 1

log 2
+
∑
j≥2

(−1)j−12−(j
2)
/
Qj−1(j − 1)

1

2j−1 − 1


Final result

lN ∼ N
(
α + 1− R∗(−1)

)
= 0.37204 · · · · N.
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Digital search trees

A big challenge: Dealing with

n−2∑
k=2

(
n

k

)
Qk−2Qn−k−2

Digital search trees again revisited: The internal path length
perspective. P. Kirschenhofer, H. Prodinger and W. Szpankowski,
SIAM Journal on Computing, 23:598–616, 1994. (paper written
1987–1990)

Analysis of the variance of the path length. Complicated
expressions!
Much improved a few years ago by Hwang, Fuchs, Zacharowitsch.
Approximating much earlier, much nicer constant.
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Digital search trees: protected nodes
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I : 1100
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Figure: A digital search tree with nine nodes, among which A and D are
2-protected.
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Digital search trees: protected nodes

Theorem

The average number of 2-protected nodes in random DSTs of size
N ≥ 1 is exactly given by

lN =
N∑

k=2

(
N

k

)
(−1)kQk−2

k−2∑
n=1

1− (n + 1)2−n − n(n+1)
4

Qn
.

Theorem

The average number lN of 2-protected nodes in random DSTs of
size N admits the asymptotic expansion

lN = N · 0.30707981393605921828549 · · ·+ N · δ(log2N) + O(1),

The tiny periodic function δ(x) has a Fourier expansion that could
be computed in principle.
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Rice’s method

lN = − 1

2πi

∫
C

Γ(N + 1)Γ(−z)

Γ(N + 1− z)
ψ(z)dz ,

where C encircles the poles 2, 3, . . . ,N and no others. The
function ψ(z) is the extension of

Qk−2

k−2∑
n=1

1− (n + 1)2−n − n(n+1)
4

Qn
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q

Combinatorics of geometrically distributed random variables.

Flajolet: “Prodinger’s q-analogs”
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q

Combinatorics of geometrically distributed random variables.
Flajolet: “Prodinger’s q-analogs”
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Batcher’s odd-even exchange revisited

Batcher’s odd-even exchange revisited: a generating functions
approach , Helmut Prodinger, Theoretical Computer Science 636
(2016), 95–100.
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Batcher

Bn: the average number of exchanges
Sedgewick:

Bn =
1(2n
n

)∑
k≥1

(
2n

n − k

)
(2F (k) + k), (2)

where F (k) is the summatory function of f (j), which is the
number of ones in the Gray code representation of j :

F (k) :=
∑

0≤j<k

f (j).
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Batcher
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The weights in our problem are ak = f (k) and bk = f (k) + 1.
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Batcher

New:
A generating function approach to derive Sedgewick’s formula.

Method: Write symbolic equations for families of lattice paths,
then translate them into generating functions
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Batcher

New:
A generating function approach to derive Sedgewick’s formula.
Method: Write symbolic equations for families of lattice paths,
then translate them into generating functions
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Batcher

A decorated path goes from (0, 0) to (n, n) and carries exactly one
(vertical) label.
W : the family of all paths (0, 0) to (n, n)
D : (0, 0) to (n, n), staying on one (prescribed) side of the diagonal
Rp : the family of paths with vertical label ap,
Sp : the family of paths with vertical label bp.
We treat ap as a fixed symbol (not depending on p).

Standard substition z =
u

(1 + u)2
.
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Batcher

W (z) =
1√

1− 4z
=
∑
n≥0

(
2n

n

)
zn =

1 + u

1− u
,

D(z) =
1−
√

1− 4z

2z
=
∑
n≥0

1

n + 1

(
2n

n

)
zn = 1 + u.

Rp =WApW;

Ap = dDAp−1Dh, p ≥ 1, A0 = ap · dDh.
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Batcher

Ap = z(1 + u)2Ap−1 = uAp−1, p ≥ 1, A0 = ap
u

1 + u
.

By iteration, Ap = ap
up+1

1 + u
and therefore

Rp = ap
up+1(1 + u)

(1− u)2

by symmetry

Sp = bp
up+1(1 + u)

(1− u)2
.
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Batcher

In the Batcher problem: bp = 1 + ap, ap = f (p)
f (k) : number of ones in the Gray code representation of k .

B(z) :=
∑
p≥0

(Rp + Sp) =
u(1 + u)

(1− u)3
+ 2

∑
p≥0

f (p)
up+1(1 + u)

(1− u)2
.

B(z) =
u(1 + u)

(1− u)3
+ 2

u(1 + u)

(1− u)3

∑
k≥0

u2
k

1 + u2k+1 .

Formula (with small mistake) given earlier by Knuth (without
proof).
Sedgewick’s formula follows from this by standard extraction of
coefficients.
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Batcher

Starting from

B(z) =
u(1 + u)

(1− u)3
+ 2

u(1 + u)

(1− u)3

∑
k≥0

u2
k

1 + u2k+1 .

one can also do asymptotics.
Singularity of generating functions, Mellin transform.
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Batcher

Theorem

The average number of exchanges in the odd-even merge of 2n
elements satisfies

Bn ∼
1

4
n log2 n + nB(log4 n),

where B(x) is a continuous periodic function of period 1; this
function can be expanded as a Fourier series
B(x) =

∑
k∈Z bke

2kπix , with

b0 = − 1

2 log 2
− γ

4 log 2
− 3

4
+ 2 log2 Γ

(
1
4

)
− log2 π ≈ 0.385417224

and for k 6= 0, with the abbreviation χk =
2πik

log 2
,

bk =
1

log 2
ζ
(
χk ,

1
4

)Γ(χk/2)

1 + χk
. Furthermore, |B(x)− b0| ≤ 0.0005.
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Asymptotics in the early days

De Bruijn’s book Asymptotic methods in Analysis

One chapter in Comtet’s book Advanced Combinatorics
(Darboux’s lemma)
Edward A. Bender’s survey article, SIAM Rev., 16 (1974),
485–515. (31 pages) Asymptotic Methods in Enumeration
much later Odlyzko’s survey paper.
Now: The book Analytic Combinatorics and various survey papers
by Philippe Flajolet (1948–2011)
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Register function

Work with Benjamin Hackl and Clemens Heuberger, in progress.
Binary trees are either a leave or a root together with a left and a
right subtree, which are binary trees.
Symbolic equation:

B = � +

B B
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Reduction of binary trees; Register function

A binary tree of size n has n internal nodes, and thus n + 1
external nodes (leaves). The number bn of binary trees of size n is
the nth Catalan number

Cn =
1

n + 1

(
2n

n

)
,

which follows the generating function

B(z) =
∑
n≥0

bnz
n = 1+B2(z) =

1−
√

1− 4z

2z
=
∑
n≥0

1

n + 1

(
2n

n

)
zn.
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Reduction of binary trees; Register function

The equation

B(z) = 1 +
z

1− 2z
B
( z2

(1− 2z)2

)
.

(Touchard’s identity) can also be seen as a recursive process to
generate binary trees via

B0(z) = 1, Br (z) = 1 +
z

1− 2z
Br−1

( z2

(1− 2z)2

)
, r ≥ 1.

In this way we get

B1(z) = 1 + z + 2z2 + 4z3 + 8z4 + 16z5 + 32z6 + 64z7 + 128z8 + 256z9 + 512z10 + · · · ,

B2(z) = 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + 428z7 + 1416z8 + 4744z9 + · · · ,

B3(z) = 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + 429z7 + 1430z8 + 4862z9 + · · · .
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Reduction of binary trees; Register function

The register function is recursively defined:
Recursive description : reg(�) = 0, and if tree t has subtrees t1
and t2, then

reg(t) =

{
max{reg(t1), reg(t2)} if reg(t1) 6= reg(t2),

1 + reg(t1) otherwise.
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Reduction of binary trees; Register function

3

2

1

0 0

2

1

0 0

1

0 0

2

2

1

0 1

0 0

1

1

0 0

0

1

0 0

Figure: A binary tree with 13 internal nodes. The numbers in the nodes
are the register function of the subtree having this node as root. The
register function of the tree is the value at the root, i. e., 3.
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Reduction of binary trees; Register function

Classical results (Flajolet et al.; Kemp, 1979)
The average value of the register function, assuming that all binary
trees of size n (= n internal nodes), is asymptotically given as

log4 n + δ(log4 n)

with a periodic function δ(x).
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Reduction of binary trees; Register function

The register function is also known as Horton-Strahler numbers in
the study of the complexity of river networks.
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Reduction of binary trees; Register function

Let Rp denote the family of trees with register function = p, then
one gets immediately from the recursive definition:

Rp =

Rp−1 Rp−1

+

Rp

∑
j<p

Rj

+ ∑
j<p

Rj Rp

Rp = zR2
p−1 + 2Rp

∑
j<p

Rj
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Reduction of binary trees; Register function

Let Rp denote the family of trees with register function = p, then
one gets immediately from the recursive definition:

Rp =

Rp−1 Rp−1

+

Rp

∑
j<p

Rj

+ ∑
j<p

Rj Rp

Rp = zR2
p−1 + 2Rp

∑
j<p

Rj
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Reduction of binary trees; Register function

Easier to manipulate:

Let Sp denote the family of trees with register function ≥ p, then
one gets immediately from the recursive definition:

Sp =

Sp−1 Sp−1

+

Sp B \ Sp−1

+

B \ Sp−1
Sp
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Reduction of binary trees; Register function

Easier to manipulate:
Let Sp denote the family of trees with register function ≥ p, then
one gets immediately from the recursive definition:

Sp =

Sp−1 Sp−1

+

Sp B \ Sp−1

+

B \ Sp−1
Sp
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Reduction of binary trees; Register function

Sp(z) =
1− u2

u

u2
p

1− u2p
.

Rp(z) =
1− u2

u

u2
p

1− u2p+1 .

z =
u

(1 + u)2

Helmut Prodinger Forty years of tree enumeration



Reduction of binary trees; Register function

Flajolet’s approach: relatively elementary, using the dyadic
valuation v2(n):
If n = 2i (2j + 1), then i = v2(n).
Can be linked to the sum of digits function S2(n).
A result by H. Delange on the average value of the sum of digits
function can be used.
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Reduction of binary trees; Register function

Kemp’s approach: Mellin transform.
At that period, people called it the “Gamma function method”.
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Reduction of binary trees; Register function

Today: Recursion at the bottom (at the leaves).

Compactification of binary trees, which we write as Φ(t):
The leaves (external nodes) will be erased.
Then, if a node has only one off-spring, these two nodes will be
merged; this operation will be repeated as long as there are such
nodes. Finally, the endnodes are declared to be external nodes.
This operation was introduced by two japanese physicists.
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Reduction of binary trees; Register function
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Reduction of binary trees; Register function
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Reduction of binary trees; Register function
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Reduction of binary trees; Register function
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Reduction of binary trees; Register function

Note that Φ(�) is undefined, so this is a partial function. Of
course, many different trees are mapped to the same binary tree.
However, they can all be obtained from a given reduced tree by the
following operations:

Each leaf can be replaced by an internal node and an arbitrary
chain of internal nodes on top, where the branches may be left or
right ones. Thus, if the leaf is replaced by a chain of k ≥ 1 internal
nodes, this leads to 2k−1 choices. Similarly, an internal node is
replaced by an internal and an arbitrary chain of internal nodes on
top, where the branches may left or right ones. Eventually, the
resulting tree is completed by external nodes in the usual way.
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Reduction of binary trees; Register function

If F (z) is a generating function counting some binary trees, then
vF (zv) counts them with respect to size (variable z) and number
of leaves (variable v).

The substitution process just described
means that v 7→ z

1−2z and z 7→ z
1−2z . Altogether, this results in

z

1− 2z
F
( z2

(1− 2z)2

)
.
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Reduction of binary trees; Register function

We have
Φr (t) ∈ B ⇔ Reg(t) ≥ r .
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Reduction of binary trees; Register function

Thus, if we set
F (r)(z) =

∑
t: Reg(t)≥r

z |t|,

we get

F (0)(z) = B(z), F (r)(z) =
z

1− 2z
F (r−1)

( z2

(1− 2z)2

)
, r ≥ 1.

The substitution z = u
(1+u)2

is always a good idea when dealing

with the register function or Catalan numbers in general. Then,
σ(z) := z2

(1−2z)2 = u2

(1+u2)2
, so it just means u 7→ u2. Furthermore,

z
1−2z = u

1+u2
. Note also that F (0)(z) = B(z) = 1 + u.

F (r)(z) =
u

1 + u2
u2

1 + u4
. . .

u2
r−1

1 + u2r
F 0(σr (z))

=
1− u2

u

u2
r

1− u2r+1 (1 + u2
r
) =

1− u2

u

u2
r

1− u2r
.
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Reduction of binary trees; Register function

This formula for the generating function of the number of trees
with register function ≥ r is of course well known.
Likewise, the generating function Br (z) has the number of trees of
size n and register function ≤ r as coefficients.

B0(z) = 1, Br (z) = 1 +
z

1− 2z
Br−1

( z2

(1− 2z)2

)
, r ≥ 1.
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Reduction of binary trees; Register function

r -branches
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Reduction of binary trees; Register function
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1

0 1

0 0

1

1

0 0

0

1

0 0

An r -branch is a maximal chain of nodes labelled r . This must be
a chain, since the merging of two such chains would already result
in the higher value r + 1. The nodes of the tree are partitioned
into such chains, from r = 0, 1, . . ..Helmut Prodinger Forty years of tree enumeration



Reduction of binary trees; Register function

Parameter “number of r -branches”, in particular, the average
number of them, assuming that all binary trees of size n are
equally likely.

Explicit formula for the expectation (and, in principle, also for
higher moments).
Total number of r -branches, for any r , i.e., the sum over r ≥ 0.
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Reduction of binary trees; Register function
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Reduction of binary trees; Register function

The r -branches are 0-branches after r iterations of Φ. The
0-branches are just the leaves; they are the only nodes labelled 0,
and they form a branch for itself. So, we have again the generating
function vB(zv). We start by computing average values. Then we
have to compute

∂

∂v
vB(zv)

∣∣∣
v=1

=
1√

1− 4z
=

1 + u

1− u
.

Again we have the recursion

G (0)(z) =
1√

1− 4z
, G (r)(z) =

z

1− 2z
G (r−1)

( z2

(1− 2z)2

)
, r ≥ 1,

this time for G (r)(z). Note that

En;r :=
1

Cn
[zn]G (r)(z)

is the average number of r -branches in a random tree of size n.
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Reduction of binary trees; Register function

Iteration leads now to

G (r)(z) =
1− u2

u

u2
r

1− u2r+1 ·
1 + u

1− u

∣∣∣
u 7→u2r

=
1− u2

u

u2
r

(1− u2r )2
.

Expanding this function about u = 1 means expanding it in terms
of
√

1− 4z . This can be done with a computer
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Reduction of binary trees; Register function

G (r)(z) ∼ 1

4r
√

1− 4z
+

1

3
(4−r − 1)

√
1− 4z

+
1

15
(41−r − 5 + 4r )(1− 4z)3/2 + · · · .

Singularity analysis guarantees that one can read off coefficients in
this expansion:

[zn]G (r)(z) ∼ 1

4r
4n
(
−1

2

n

)
(−1)n +

1

3
(4−r − 1)4n

(1
2

n

)
(−1)n

+
1

15
(41−r − 5 + 4r )4n

(3
2

n

)
(−1)n + · · ·

∼ 4n√
π

(
1

4r
√
n

+
1

6

(
1− 7

4r+1

) 1

n3/2

)
+ · · ·
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Reduction of binary trees; Register function

The asymptotics of Cn are straight forward, especially for a
computer, and eventually we find

1

Cn
[zn]G (r)(z) ∼ n

4r
+

1

6

( 5

4r
+ 1
)

+
1

20n

(
4r − 1

4r

)
+ · · · .

In principle, any number of terms would be available.
Variance can also be computed.
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Reduction of binary trees; Register function

Theorem

The number of r -branches in binary trees of size n has for
expectation and variance the following asymptotic formulæ, which
hold for fixed r and n→∞:

En;r =
n

4r
+

1

6

( 5

4r
+ 1
)

+
1

20n

(
4r − 1

4r

)
+ O

( 1

n2

)
,

Vn;r =
4r − 1

3 16r
n − 23

90
16−r +

5

18
4−r − 1

45
+ O

(1

n

)
.
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Reduction of binary trees; Register function

Theorem

The expected number of r -branches in binary trees of size n is
given by the explicit formula

n + 1(2n
n

) ∑
λ≥1

λ

[(
2n

n + 1− λ2r

)
− 2

(
2n

n − λ2r

)
+

(
2n

n − 1− λ2r

)]
.

Helmut Prodinger Forty years of tree enumeration



Reduction of binary trees; Register function

Theorem

The average value of the total number of branches in a random
binary tree of size n admits the asymptotic expansion

4n

3
+

1

12
log2 n −

2ζ ′(−1)

log 2
− γ

6 log 2
+

37

36
+ δ(log4 n) + o(1),

with

δ(x) =
1

log 2

∑
k 6=0

Γ(
χk

2
)ζ(χk − 1)(χk − 1)e2πikx .

The periodic function δ(x) is given by its Fourier series expansion;
such functions are typical in a register context.

Helmut Prodinger Forty years of tree enumeration



A Similar Recursive Scheme Involving Lattice Paths

Simple two-dimensional lattice paths are sequences of the symbols
{↑,→, ↓,←}. It is easy to see that the generating function
counting these paths (without the path of length 0) is

L(z) =
4z

1− 4z
= 4z + 16z2 + 64z3 + 256z4 + 1024z5 + · · · .

Theorem

The generating function L(z) = 4z
1−4z satisfies the functional

equation

L(z) = 4L
( z2

(1− 2z)2

)
+ 4z .

Study of the “compactification degree.”
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Reduction of planar trees

Reduction of planar trees (ongoing research together with
Benjamin Hackl and Sara Kropf)

Leaves Paths

Figure: Removal of leaves / paths.
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Reduction of planar trees

Proposition

The generating function T (z , t) which enumerates rooted plane
trees with respect to their internal nodes (marked by the variable
z) and leaves (marked by t) is given explicitly by

T (z , t) =
1− (z − t)−

√
1− 2(z + t) + (z − t)2

2
.

Definition

The Narayana numbers are defined as

Nn,k =
1

n

(
n

k − 1

)(
n

k

)
The Narayana polynomials are defined as

Nn(x) =
n∑

k=1

Nn,kx
k−1

T (z , tz) = zt +
∑
n≥2

n−1∑
k=1

Nn−1,kz
ntk =

∑
n≥1

znÑn−1(t). (3)
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Reduction of planar trees

The operator that drives the reduction of leaves:

Φ(f (z , t)) := (1− t)f

(
z

(1− t)2
,

zt

(1− t)2

)
.

Theorem

The bivariate generating function Gr (z , v) enumerating rooted
plane trees whose leaves can be cut at least r -times, where z marks
the tree size and v marks the size of the r -fold cut tree, is given by

Gr (z , v) = ΦrT (zv , tv)|t=z

and, equivalently, by

Gr (z , v) =
1− ur+2

(1− ur+1)(1 + u)
T

(
u(1− ur+1)2

(1− ur+2)2
v ,

ur+1(1− u)2

(1− ur+2)2
v

)
,

where z = u/(1 + u)2.
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Reduction of planar trees

Many explicit results can be deduced from that. E.g.

EX d
n,r =

1

Cn−1
[zn]

∂d

∂vd
Gr (z , 1)

∣∣∣
v=1

=
1

Cn−1
[zn]

udd!

(1 + u)(1− ur+1)d(1− u)d−1
Ñd−1(ur )
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Priority trees

Average Case-Analysis of Priority trees: A structure for priority
queue administration A. Panholzer and H. Prodinger, Algorithmica
22 (1998), 600–630.
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Priority trees

k

object of C
with nodes k + 1, . . . , n

object of B
with nodes 1, . . . , k − 1

Figure: Decomposition of the family A.
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Priority trees

k

+∞

object of A
with nodes k + 1, . . . , n

object of B
with nodes 1, . . . , k − 1

Figure: Decomposition of the family B.

Helmut Prodinger Forty years of tree enumeration



Priority trees

k

−∞

object of C
with nodes k + 1, . . . , n

object of A
with nodes 1, . . . , k − 1

Figure: Decomposition of the family C.
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Tree function

The tree function
y = zey

enumerates the labelled rooted trees:

y(z) =
∑
n≥1

nn−1
zn

n!

a variant of Lambert’s W -function
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Tree function

Epidemics with two levels of mixing: The exact moments, H.
Prodinger, SADIO 2 (1999), 1–4.
The probabilities(

n − 1

k − 1

)
p(pk)k−2(1− pk)n−k , (1 ≤ k ≤ n)

where considered in the study of an epidemics model.

E(z) =
∑
k≥0

(tk + 1)k−1
zk

k!
,

which is also given implicitly by

z = E−t logE.

A variant of the tree function.
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Tree function

An identity conjectured by Lacasse via the tree function, H.
Prodinger, Electronic Journal of Combinatorics 20 (3), 2013, P7.

α(n) =
n∑

k=0

(
n

k

)
kk(n − k)n−k

β(n) =
∑

k1+k2+k3=n

n!

k1!k3!k3!
kk11 kk22 kk33

β(n)− α(n) = nn+1

α(n) = n![zn]
( 1

1− y

)2
β(n) = n![zn]

( 1

1− y

)3
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Tree function

Tight Bounds on Information Leakage from Repeated Independent
Runs
by Smith and Smith (2016)

Donald E. Knuth and Boris Pittel. A recurrence related to trees.
Proceedings of the American Mathematical Society,
105(2):335—349.
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Tree function

On Ramanujan’s Q(n)-function. P. Flajolet, P. Grabner, P.
Kirschenhofer and H. Prodinger, Journal of Computational and
Applied Mathematics, 58:103–116, 1995.

Q(n) = 1 +
n − 1

n
+

(n − 1)(n − 2)

n2
+ · · ·

R(n) = 1 +
n

n + 1
+

n2

(n + 1)(n + 2)
+ · · ·

“Show that

R(n)− Q(n) =
2

3
+

8

135(n + k)

where k ≡ k(n) lies between 2
21 and 8

45”
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Tree function

D(n) = R(n)− Q(n)

∞∑
n=1

D(n)nn−1
zn

n!
= log

(1− y)2

2(1− ez)
= log

(1− y)2

2(1− ye1−y )

y = zey
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