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Galton-Watson Processes with Immigration

Typical Construction

I (χn,i )n,i independent with

distribution µ on {0, 1, 2, . . .}.
I (ηn) independent (also with χ)

with distribution ν.

I Set Z0 = k and

Zn+1 = ηn+1 +
Zn∑
i=1

χn,i .

I Atypical construction (ν = 0): Let X = (Xn) be a random walk such
that P(Xn − Xn−1 = k) = µk+1. Define Z0 = k and

Zn+1 = k + XCn where Cn = Z0 + · · ·+ Zn.

I Branching property: Pµ,νk1
∗ Pµk2

= Pµ,νk1+k2
.

I Implication: Eµ,νk

(
sZn
)

= Eµk
(
sZn
)k Eµ,ν0

(
sZn
)
.
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Galton-Watson trees and forests
Rooted plane trees
A tree in which one has ordered all siblings.
Formally realized as sets of words u ∈ U = ∪n≥0Zn

+ such as
{∅, 1, 2, 3, 1, 21, 22, 221, 222, 223, 224, 225, , 2211, . . .}, satisfying

1. ∅ ∈ τ
2. If uj ∈ τ then u ∈ τ
3. If u ∈ τ , there exists ku(τ) ≥ 0 such that uj ∈ τ if and only if

1 ≤ j ≤ ku(τ).
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Galton-Watson trees
Built recursively via an iid sequence (χu, u ∈ U ).

I ∅ ∈ Θ

I If u ∈ Θ, add uj for all j ≤ χu.

If Zk is the size of the k-th generation, the process Z = (Zk) is a
Galton-Watson process whose offspring distribution is the same as that of
χ.

Θ is almost surely finite if and only if E(χu) ≤ 1.

Θn: Θ conditioned on having size n.



Theorem (Aldous 1993)
If E(χi ) = 1, Var(χi ) = σ2 ∈ (0,∞) and χu is aperiodic then(
Θn, σdn/

√
n
)

converges distribution as n→∞ to a random metric
space (τ, d) called the Continuum Random Tree.

Root

↑, The continuum random tree. III, Ann. Probab. 21 (1993), no. 1, 248–289. MR: 1207226



Conjecture (Aldous 1991)
If E(χi ) = 1, Var(χi ) = σ2 ∈ (0,∞) and χu is aperiodic then
(Z n√

nk
/
√
n, k ≥ 0) converges in distribution n→∞ to (σ/2Zσt/2, t ≥ 0),

where ∫ 1

0

f (es) ds =

∫
f (t)Zt dt.

a

a√
d1/3−g1/3

0 11
3

g1/3 d1/3

0 1

David Aldous, The continuum random tree. II. An overview, Stochastic analysis (Durham, 1990), London Math. Soc. Lecture Note Ser.,
vol. 167, Cambridge Univ. Press, Cambridge, 1991, pp. 23–70. MR: 1166406



Theorem (Drmota and Gittenberger, 1997)
If E(χi ) = 1, Var(χi ) = σ2 ∈ (0,∞) and χu is aperiodic then
(Z n√

nk
/
√
n, k ≥ 0) converges in distribution n→∞ to (σ/2Zσt/2, t ≥ 0),

where ∫ 1

0

f (es) ds =

∫
f (t)Zt dt

and e is a normalized Brownian excursion.

a

a√
d1/3−g1/3

0 11
3

g1/3 d1/3

0 1

Michael Drmota and Bernhard Gittenberger, On the profile of random trees, Random Structures Algorithms 10 (1997), no. 4, 421–451.
MR: 1608230 (99c:05176)



Jeulin’s theorem

Theorem
The local time process Z defined by∫ 1

0

f (es) ds =

∫
f (t)Zt dt

has the same law as the unique solution Z̃ of

Z̃t = e∫ t
0
Z̃s ds

which is non-zero to the right of zero.

Th. Jeulin and M. Yor (eds.), Grossissements de filtrations: exemples et applications, Lecture Notes in Mathematics, vol. 1118,

Springer-Verlag, Berlin, 1985. MR: 884713



Time-change equations: Coding discrete populations

1

2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17 18 19

20 21 22

I χi : # children of individual i .

I xn = χ1 + · · ·+ χn − n.

I yn: # immigrants up to
generation n.

I cn: # individuals up to
generation n.

I zn: # individuals comprising
generation n.

cn = c0 + yn + χ1 + · · ·+ χcn−1

= z0 + · · ·+ zn

zn = c0 + xcn−1 + yn
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A representation of GWI processes
I µ reproduction law, ν immigration law.
I µ̃(k) = µ(k + 1).
I X a random walk with step distribution µ̃.
I Y an independent random walk with step distribution ν.
I Z0 = k and for n ≥ 1:

Zn = k + XZ0+···+Zn−1 + Yn.
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A representation of GWI processes

I µ reproduction law, ν immigration law.

I µ̃(k) = µ(k + 1).

I X a random walk with step distribution µ̃.

I Y an independent random walk with step distribution ν.

I Z0 = k and for n ≥ 1:

Zn = k + XZ0+···+Zn−1 + Yn.

Proposed extension:
X a SPLP, Y an independent subordinator and x ≥ 0

Zt = x + X∫ t
0
Zs ds

+ Yt .



An initial value problem

Zt = x + X∫ t
0
Zs ds

+ Yt

Initial Value Problem:
Let f , g be càdlàg with ∆f ≥ 0, g increasing and f (0) + g(0) ≥ 0. A
function c solves IVP(f , g) if

c ′+ = f ◦ c + g and c0 = 0.

I f : reproduction function

I g : immigration function

I c : cumulative population

I h = c ′+: profile

Obvious problems

1. Existence?

2. Uniqueness?



The Lamperti transformation, existence, and uniqueness

c ′+ = f ◦ c . i = c−1 i ′ =
1

f ◦ c ◦ i =
1

f
!!!

Problem:f (x) =
√
|1− x |. Then there are many solutions: their

derivatives are

(
2− x

2

)+

and


2−x

2 x < 2

0 2 ≤ x ≤ 2 + l
x−2−l

2 x ≥ 2 + l



Existence and uniqueness for IVP(f , g)

c ′+ = f ◦ c + g

Existence and uniqueness theorem
Let f , g be càdlàg ∆f ≥ 0, g increasing, f (0) + g(0) ≥ 0. There exists a
non-decreasing c which satisfies IVP(f , g). If g is strictly increasing the
solution is unique.

Continuity theorem
Suppose g is strictly increasing, and that fn → f and gn → g .
Let σn → 0, tni = σni and define cn by cn(0) = 0 and

cn(t) = cn(ti−1) + (t − tni−1) [fn ◦ cn(ti−1) + gn(ti−1)]+
.

for t ∈ [ti−1, ti ]. Then cn converges to the unique solution c of IVP(f , g).



The Lamperti type representation of CBI

Theorem
Let X be a SPLP and Y and independent subordinator. For any x ≥ 0
there exists a unique solution to

Zt = x + X∫ t
0
Zs ds

+ Ys .



Limit theorems for GWI processes

Corollary

I X n random walk with step distribution µn
k+1, k ≥ −1.

I Y n random walk with step distribution νnk , k ≥ 0.

I X n
cn/n→ µ (µ is sP ID with Laplace exponent ψ).

I Y n
dn
/n→ ν (ν corresponds to a subordinator with Laplace exponent

ϕ).

I Z n is GW(µn, νn), Z n
0 = kn

I
knd kn

x

xc km
x

→ c ∈ [0,∞)

I x
kn
Z n
d kn

x

t converges weakly to CBIx(cψ,ϕ).

Anders Grimvall, On the convergence of sequences of branching processes, Ann. Probability 2 (1974), 1027–1045. MR: 0362529

M. Emilia Caballero, José Luis Pérez Garmendia, and Gerónimo Uribe Bravo, A Lamperti-type representation of continuous-state

branching processes with immigration, Ann. Probab. 41 (2013), no. 3A, 1585–1627. MR: 3098685



Limit theorems for Conditioned GW processes

Theorem

I µ critical and aperiodic offspring law.

I S random walk with step distribution µk+1, k ≥ −1.

I Sn/an converges weakly to (sp) stable law of index α ∈ (1, 2].

I Z n,kn with law GWkn(µ) and conditioned on∑
i

Z n,kn
i = n.

I kn/an → l > 0.

I F l : first passage bridge of α stable spLp.

Then (an
n
Z n,kn
nt

)
t≥0
→ solution of IVP

(
F l , 0

)
.

Jim Pitman, The SDE solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree or forest,

Ann. Probab. 27 (1999), no. 1, 261–283. MR: 1681110 (2000b:60200) M. Emilia Caballero, José Luis Pérez Garmendia, and Gerónimo

Uribe Bravo, A Lamperti-type representation of continuous-state branching processes with immigration, Ann. Probab. 41 (2013), no. 3A,

1585–1627. MR: 3098685



Coding discrete multitype populations

1

1 2 2 3

4 3 4 5 6 7

8 6 7 9 10 11 8 9

10 11 12

I χi,j
k : # children of type j of the

k-th individual of type i .

I x j,jn = χj,j
1 + · · ·+ χj,j

n − n.

I i 6= j : x i,jn = χi,j
1 + · · ·+ χi,j

n .

I y j
n: # immigrants of type j up

to generation n.

I c jn: # individuals of type j up
to generation n.

I z jn: # individuals of type j
comprising generation n.

c jn = c j0 + y j
n +

∑
i

χi,j
1 + · · ·+ χi,j

c in−1

= z j0 + · · ·+ z jn

z jn = c j0 +
∑
i

x i,j
(
c in−1

)
+ y j

n
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A representation of Multi-type Galton-Watson processes
with immigration

Consider m + 1 independent random walks on Rm: X 1, . . . ,Xm and Y
with

X j =
(
X j,1, . . . ,X j,m

)
.

Suppose that

I X j,j has jumps in {−1, 0, 1, . . .},
I for i 6= j , X i,j has jumps in {0, 1, 2, . . .} and

I Y =
(
Y 1, . . . ,Ym

)
and Y j has jumps in {0, 1, 2, . . .}.

Let z = (z1, . . . , zm) ∈ {0, 1, 2, . . .}m.

Define Z0 = z and, recursively, C j
n = Z j

0 + · · ·+ Z j
n and

Z j
n+1 = zj +

∑
i

X i,j
(
C i
n

)
+ Y j

n+1.

Then Z is a multi-type Galton-Watson process with immigration and all
such processes can be obtained this way.



Limits of random walks associated to MGW processes
Consider m + 1 independent random walks on Rm: X 1, . . . ,Xm and Y
with

X j =
(
X j,1, . . . ,X j,m

)
.

Suppose that
I X j,j has jumps in {−1, 0, 1, . . .},
I for i 6= j , X i,j has jumps in {0, 1, 2, . . .} and

Scaling limit for fixed i
Sequence: X i,n =

(
X i,j,n, 1 ≤ j ≤ n

)
.

Scaling limit: X i,n
bntc/an,i , t ≥ 0.

If X i is a scaling limit: it is a Lévy processes in Rm such that X i,i is
spectrally positive and X i,j is a subordinator for i 6= j .
Proposal: Construct Z such that

Z 1
t = z1 + X 1,1∫ t

0
Z 1
s ds

+ X 2,1∫ t
0
Z 2
s ds

+ Y 1
t

Z 2
t = z1 + X 1,2∫ t

0
Z 1
s ds

+ X 2,2∫ t
0
Z 2
s ds

+ Y 2
t

↑, Affine processes on Rm+ × Rn and multiparameter time changes, arXiv e-prints (2015), To appear in Ann. Inst. H. Poincaré Probab.

Statist



Trees with a given degree distribution

Let (V ,E , ρ,≤) be a plane tree.
Write V = {v1, . . . , vn} where ρ = v0 < · · · < vn−1 and

δi = # {j ≥ i : {i , j} ∈ E} .

Degree sequence
The degree sequence N0,N1, . . . is obtained by setting

Ni = # {j : δj = i} .

It is characterized by:
∑

i Ni = 1 +
∑

i iNi .
Every such sequence arises from a plane tree.

Tree with a given degree sequence
Let s = (N0,N1, . . .) be a degree sequence. We will be interested in
uniform trees from the set of plane trees having degree sequence s.



Examples

Root

Figure: Figure by Osvaldo Angtuncio
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Conditioned Galton-Watson trees

Let U = {∅} ∪ {u1 · · · un : n ≥ 1, ui ∈ Z+} be the set of canonical labels
of plane trees.
Let µ = (µk , k ∈ N) be an offspring distribution and (ξu, u ∈ U ) be iid
with law µ.

Galton-Watson trees

Θ = {∅} ∪ {uj ∈ U : j ≤ ξu} .

Conditioned Galton-Watson trees

Θn
d
= Θ conditioned on having n vertices

Proposition
Θ conditioned on having degree sequence s is uniform on trees with
degree sequence s.
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