Horizontal profiles of forests: scaling limits and time-change equations

Gerónimo URIBE BRAVO Joint work with overlapping subsets of $\mathscr{A} = \{$ Angtuncio, Caballero, Lambert, Pérez Garmendia $\}$

> Instituto de Matemáticas Universidad Nacional Autónoma de México

Workshop in Analytic and Probabilistic Combinatorics Banff International Research Station Oct-27-2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Galton-Watson Processes with Immigration

Typical Construction

- $(\chi_{n,i})_{n,i}$ independent with distribution μ on $\{0, 1, 2, \ldots\}$.
- (η_n) independent (also with χ) with distribution ν .

• Set
$$Z_0 = k$$
 and

$$Z_{n+1} = \eta_{n+1} + \sum_{i=1}^{Z_n} \chi_{n,i}.$$

Galton-Watson Processes with Immigration

Typical Construction

- $(\chi_{n,i})_{n,i}$ independent with distribution μ on $\{0, 1, 2, \ldots\}$.
- (η_n) independent (also with χ) with distribution ν.

Set
$$Z_0 = k$$
 and

$$Z_{n+1} = \eta_{n+1} + \sum_{i=1}^{Z_n} \chi_{n,i}.$$

Atypical construction (*ν* = 0): Let *X* = (*X_n*) be a random walk such that P(*X_n* − *X_{n-1}* = *k*) = *µ_{k+1}*. Define *Z*₀ = *k* and

$$Z_{n+1} = k + X_{C_n}$$
 where $C_n = Z_0 + \cdots + Z_n$

- Branching property: $\mathbb{P}_{k_1}^{\mu,\nu} * \mathbb{P}_{k_2}^{\mu} = \mathbb{P}_{k_1+k_2}^{\mu,\nu}$.
- Implication: $\mathbb{E}_{k}^{\mu,\nu}(s^{Z_{n}}) = \mathbb{E}_{k}^{\mu}(s^{Z_{n}})^{k} \mathbb{E}_{0}^{\mu,\nu}(s^{Z_{n}}).$

Galton-Watson trees and forests

Rooted plane trees

A tree in which one has ordered all siblings. Formally realized as sets of words $u \in \mathscr{U} = \bigcup_{n \ge 0} \mathbb{Z}_+^n$ such as $\{\emptyset, 1, 2, 3, 1, 21, 22, 221, 222, 223, 224, 225, , 2211, \ldots\}$, satisfying

- 1. $\emptyset \in \tau$
- 2. If $uj \in \tau$ then $u \in \tau$
- 3. If $u \in \tau$, there exists $k_u(\tau) \ge 0$ such that $uj \in \tau$ if and only if $1 \le j \le k_u(\tau)$.

Galton-Watson trees and forests

Rooted plane trees

A tree in which one has ordered all siblings. Formally realized as sets of words $u \in \mathscr{U} = \bigcup_{n \ge 0} \mathbb{Z}_+^n$ satisfying

- 1. $\emptyset \in \tau$
- 2. If $uj \in \tau$ then $u \in \tau$
- 3. If $u \in \tau$, there exists $k_u(\tau) \ge 0$ such that $uj \in \tau$ if and only if $1 \le j \le k_u(\tau)$.

Galton-Watson trees

Built recursively via an iid sequence $(\chi_u, u \in \mathscr{U})$.

- ► $\emptyset \in \Theta$
- If $u \in \Theta$, add uj for all $j \le \chi_u$.

If Z_k is the size of the *k*-th generation, the process $Z = (Z_k)$ is a Galton-Watson process whose offspring distribution is the same as that of χ .

 Θ is almost surely finite if and only if $\mathbb{E}(\chi_u) \leq 1$.

 Θ^n : Θ conditioned on having size *n*.

Theorem (Aldous 1993)

If $\mathbb{E}(\chi_i) = 1$, $\operatorname{Var}(\chi_i) = \sigma^2 \in (0, \infty)$ and χ_u is aperiodic then $(\Theta^n, \sigma d_n / \sqrt{n})$ converges distribution as $n \to \infty$ to a random metric space (τ, d) called the Continuum Random Tree.

↑, The continuum random tree. III, Ann. Probab. 21 (1993), no. 1, 248-289. MR: 1207226

Conjecture (Aldous 1991)

If $\mathbb{E}(\chi_i) = 1$, $\operatorname{Var}(\chi_i) = \sigma^2 \in (0, \infty)$ and χ_u is aperiodic then $(Z_{\sqrt{nk}}^n/\sqrt{n}, k \ge 0)$ converges in distribution $n \to \infty$ to $(\sigma/2Z_{\sigma t/2}, t \ge 0)$, where

David Aldous, The continuum random tree. II. An overview, Stochastic analysis (Durham, 1990), London Math. Soc. Lecture Note Ser., vol. 167, Cambridge Univ. Press, Cambridge, 1991, pp. 23–70. MR: 1166406

Theorem (Drmota and Gittenberger, 1997)

If $\mathbb{E}(\chi_i) = 1$, $\operatorname{Var}(\chi_i) = \sigma^2 \in (0, \infty)$ and χ_u is aperiodic then $(Z_{\sqrt{nk}}^n/\sqrt{n}, k \ge 0)$ converges in distribution $n \to \infty$ to $(\sigma/2Z_{\sigma t/2}, t \ge 0)$, where

$$\int_0^1 f(e_s) \, ds = \int f(t) \, Z_t \, dt$$

and e is a normalized Brownian excursion.

Michael Drmota and Bernhard Gittenberger, On the profile of random trees, Random Structures Algorithms 10 (1997), no. 4, 421–451. MR: 1608230 (99c:05176)

Jeulin's theorem

Theorem The local time process Z defined by

$$\int_0^1 f(e_s) \, ds = \int f(t) \, Z_t \, dt$$

has the same law as the unique solution \tilde{Z} of

$$ilde{Z}_t = e_{\int_0^t ilde{Z}_s \, ds}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

which is non-zero to the right of zero.

Th. Jeulin and M. Yor (eds.), Grossissements de filtrations: exemples et applications, Lecture Notes in Mathematics, vol. 1118, Springer-Verlag, Berlin, 1985. MR: 884713 Time-change equations: Coding discrete populations

- χ_i : # children of individual *i*.
- ▶ y_n: # immigrants up to generation n.
- ► c_n: # individuals up to generation n.

$$c_n = c_0 + y_n + \chi_1 + \cdots + \chi_{c_{n-1}}$$

Time-change equations: Coding discrete populations

- χ_i : # children of individual *i*.
- $x_n = \chi_1 + \cdots + \chi_n n.$
- ▶ y_n: # immigrants up to generation n.
- c_n: # individuals up to generation n.
- ► z_n: # individuals comprising generation n.

$$c_n = c_0 + y_n + \chi_1 + \dots + \chi_{c_{n-1}}$$
$$= z_0 + \dots + z_n$$
$$z_n = c_0 + x_{c_{n-1}} + y_n$$

A representation of GWI processes

• μ reproduction law, ν immigration law.

•
$$\tilde{\mu}(k) = \mu(k+1).$$

- X a random walk with step distribution $\tilde{\mu}$.
- > Y an independent random walk with step distribution ν .

•
$$Z_0 = k$$
 and for $n \ge 1$:

$$Z_n = k + X_{Z_0 + \dots + Z_{n-1}} + Y_n$$

A representation of GWI processes

 $\blacktriangleright~\mu$ reproduction law, ν immigration law.

•
$$\tilde{\mu}(k) = \mu(k+1).$$

- X a random walk with step distribution $\tilde{\mu}$.
- > Y an independent random walk with step distribution ν .

•
$$Z_0 = k$$
 and for $n \ge 1$:

$$Z_n = k + X_{Z_0 + \dots + Z_{n-1}} + Y_n.$$

A representation of GWI processes

• μ reproduction law, ν immigration law.

•
$$\tilde{\mu}(k) = \mu(k+1).$$

- > X a random walk with step distribution $\tilde{\mu}$.
- > Y an independent random walk with step distribution ν .
- $Z_0 = k$ and for $n \ge 1$:

$$Z_n = k + X_{Z_0 + \dots + Z_{n-1}} + Y_n.$$

Proposed extension:

X a SPLP, Y an independent subordinator and $x \ge 0$

$$Z_t = x + X_{\int_0^t Z_s \, ds} + Y_t.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An initial value problem

$$Z_t = x + X_{\int_0^t Z_s \, ds} + Y_t$$

Initial Value Problem:

Let f,g be càdlàg with $\Delta f \ge 0$, g increasing and $f(0) + g(0) \ge 0$. A function c solves IVP(f,g) if

$$c_+'=f\circ c+g\quad\text{and}\quad c_0=0.$$

- f: reproduction function
- ▶ g: immigration function
- c: cumulative population
- $h = c'_+$: profile

Obvious problems

- 1. Existence?
- 2. Uniqueness?

The Lamperti transformation, existence, and uniqueness

$$c'_{+} = f \circ c.$$
 $i = c^{-1}$ $i' = \frac{1}{f \circ c \circ i} = \frac{1}{f}!!!$

Problem: $f(x) = \sqrt{|1-x|}$. Then there are many solutions: their derivatives are

$$\left(\frac{2-x}{2}\right)^{+} \text{ and } \begin{cases} \frac{2-x}{2} & x < 2\\ 0 & 2 \le x \le 2+l\\ \frac{x-2-l}{2} & x \ge 2+l \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Existence and uniqueness for IVP(f,g)

$$c'_+ = f \circ c + g$$

Existence and uniqueness theorem

Let f, g be càdlàg $\Delta f \ge 0$, g increasing, $f(0) + g(0) \ge 0$. There exists a non-decreasing c which satisfies IVP(f, g). If g is strictly increasing the solution is unique.

Continuity theorem

Suppose g is strictly increasing, and that $f_n \to f$ and $g_n \to g$. Let $\sigma_n \to 0$, $t_i^n = \sigma^n i$ and define c^n by $c^n(0) = 0$ and

$$c^{n}(t) = c^{n}(t_{i-1}) + (t - t_{i-1}^{n}) \left[f_{n} \circ c^{n}(t_{i-1}) + g_{n}(t_{i-1}) \right]^{+}.$$

for $t \in [t_{i-1}, t_i]$. Then c^n converges to the unique solution c of IVP(f, g).

The Lamperti type representation of CBI

Theorem

Let X be a SPLP and Y and independent subordinator. For any $x \ge 0$ there exists a unique solution to

$$Z_t = x + X_{\int_0^t Z_s \, ds} + Y_s.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Limit theorems for GWI processes

Corollary

- ▶ X^n random walk with step distribution $\mu_{k+1}^n, k \ge -1$.
- Y^n random walk with step distribution $\nu_k^n, k \ge 0$.
- $X_{c_n}^n/n \to \mu$ (μ is sP ID with Laplace exponent ψ).
- $Y_{d_n}^n/n \rightarrow \nu$ (ν corresponds to a subordinator with Laplace exponent φ).

$$\begin{array}{l} \succ \hspace{0.1cm} Z^n \hspace{0.1cm} \text{is} \hspace{0.1cm} \mathsf{GW}(\mu^n,\nu^n), \hspace{0.1cm} Z^n_0=k_n \\ \flat \hspace{0.1cm} \frac{k_n d_{\frac{k_n}{x}}}{xc_{\frac{k_m}{x}}} \to c \in [0,\infty) \\ \flat \hspace{0.1cm} \frac{x}{k_n} Z^n_{d_{\frac{k_n}{x}}t} \hspace{0.1cm} \text{converges weakly to} \hspace{0.1cm} \mathsf{CBI}_x(c\psi,\varphi). \end{array}$$

Anders Grinvall, On the convergence of sequences of branching processes, Ann. Probability 2 (1974), 1027–1045. MR: 0362529
M. Emilia Caballero, José Luis Pérez Garmendia, and Gerónimo Uribe Bravo, A Lamperti-type representation of continuous-state branching processes with immigration, Ann. Probab. 41 (2013), no. 3A, 1585–1627. MR: 3098685

Limit theorems for Conditioned GW processes

Theorem

- μ critical and aperiodic offspring law.
- ▶ *S* random walk with step distribution $\mu_{k+1}, k \ge -1$.
- ▶ S_n/a_n converges weakly to (sp) stable law of index $\alpha \in (1, 2]$.
- > Z^{n,k_n} with law $GW_{k_n}(\mu)$ and conditioned on

$$\sum_i Z_i^{n,k_n} = n.$$

$$k_n/a_n \to l > 0.$$

• F': first passage bridge of α stable spLp.

Then

$$\left(\frac{a_n}{n} Z_{nt}^{n,k_n}\right)_{t \ge 0} \to \text{solution of } \mathsf{IVP}(F',0) \,.$$

Jim Pitman, The SDE solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree or forest, Ann. Probab. 27 (1999), no. 1, 261–283. MR: 1681110 (2000b:60200) M. Emilia Caballero, José Luis Pérez Garmendia, and Gerónimo Uribe Bravo, A Lamperti-type representation of continuous-state branching processes with immigration, Ann. Probab. 41 (2013), no. 3A, 1585–1627. MR: 3098685

Coding discrete multitype populations

• $\chi_k^{i,j}$: # children of type *j* of the *k*-th individual of type *i*.

$$c_n^j = c_0^j + y_n^j + \sum_i \chi_1^{i,j} + \dots + \chi_{c_{n-1}^i}^{i,j}$$

- y_n^j : # immigrants of type j up to generation n.
- c_n^j : # individuals of type j up to generation n.

Coding discrete multitype populations

• $\chi_k^{i,j}$: # children of type *j* of the *k*-th individual of type *i*.

•
$$x_n^{j,j} = \chi_1^{j,j} + \dots + \chi_n^{j,j} - n$$

•
$$i \neq j$$
: $x_n^{i,j} = \chi_1^{i,j} + \dots + \chi_n^{i,j}$.

- y_n^j : # immigrants of type j up to generation n.
- c_n^j : # individuals of type j up to generation n.
- ► z^j_n: # individuals of type j comprising generation n.

$$c_{n}^{j} = c_{0}^{j} + y_{n}^{j} + \sum_{i} \chi_{1}^{i,j} + \dots + \chi_{c_{n-1}}^{i,j}$$
$$= z_{0}^{j} + \dots + z_{n}^{j}$$
$$z_{n}^{j} = c_{0}^{j} + \sum_{i} x^{i,j} (c_{n-1}^{i}) + y_{n}^{j}$$

・ロト・日本・日本・日本・日本・日本

A representation of Multi-type Galton-Watson processes with immigration

Consider m + 1 independent random walks on \mathbb{R}^m : X^1, \ldots, X^m and Y with

$$X^j = \left(X^{j,1}, \ldots, X^{j,m}\right).$$

Suppose that

▶
$$X^{j,j}$$
 has jumps in $\{-1, 0, 1, ...\}$,
▶ for $i \neq j$, $X^{i,j}$ has jumps in $\{0, 1, 2, ...\}$ and
▶ $Y = (Y^1, ..., Y^m)$ and Y^j has jumps in $\{0, 1, 2, ...\}$.
Let $z = (z_1, ..., z_m) \in \{0, 1, 2, ...\}^m$.
Define $Z_0 = z$ and, recursively, $C_n^j = Z_0^j + \dots + Z_n^j$ and

$$Z_{n+1}^{j} = z_{j} + \sum_{i} X^{i,j} (C_{n}^{i}) + Y_{n+1}^{j}.$$

Then Z is a multi-type Galton-Watson process with immigration and all such processes can be obtained this way.

Limits of random walks associated to MGW processes

Consider m + 1 independent random walks on \mathbb{R}^m : X^1, \ldots, X^m and Y with

$$X^j = \left(X^{j,1}, \ldots, X^{j,m}\right).$$

Suppose that

- $X^{j,j}$ has jumps in $\{-1, 0, 1, \ldots\}$,
- for $i \neq j$, $X^{i,j}$ has jumps in $\{0, 1, 2, \ldots\}$ and

Scaling limit for fixed *i*

Sequence: $X^{i,n} = (X^{i,j,n}, 1 \le j \le n)$. Scaling limit: $X_{\lfloor nt \rfloor}^{i,n}/a_{n,i}, t \ge 0$. If X^i is a scaling limit: it is a Lévy processes in \mathbb{R}^m such that $X^{i,i}$ is spectrally positive and $X^{i,j}$ is a subordinator for $i \ne j$. Proposal: Construct Z such that

$$Z_t^1 = z_1 + X_{\int_0^t Z_s^1 ds}^{1,1} + X_{\int_0^t Z_s^2 ds}^{2,1} + Y_t^1$$

$$Z_t^2 = z_1 + X_{\int_0^t Z_s^1 ds}^{1,2} + X_{\int_0^t Z_s^2 ds}^{2,2} + Y_t^2$$

 \uparrow , Affine processes on $\mathbb{R}^m_+ \times \mathbb{R}^n$ and multiparameter time changes, arXiv e-prints (2015), To appear in Ann. Inst. H. Poincaré Probab.

Trees with a given degree distribution

Let
$$(V, E, \rho, \leq)$$
 be a plane tree.
Write $V = \{v_1, \dots, v_n\}$ where $\rho = v_0 < \dots < v_{n-1}$ and
 $\delta_i = \#\{j \geq i : \{i, j\} \in E\}$.

Degree sequence

The degree sequence N_0, N_1, \ldots is obtained by setting

$$N_i = \# \left\{ j : \delta_j = i \right\}.$$

It is characterized by: $\sum_{i} N_i = 1 + \sum_{i} iN_i$. Every such sequence arises from a plane tree.

Tree with a given degree sequence

Let $s = (N_0, N_1, ...)$ be a degree sequence. We will be interested in uniform trees from the set of plane trees having degree sequence s.

Examples

Figure: Figure by Osvaldo Angtuncio

Examples

Figure: Figure by Osvaldo Angtuncio

・ロト ・回ト ・ヨト

Examples

Figure: Figure by Osvaldo Angtuncio

<ロト <回ト < 注ト < 注ト

Conditioned Galton-Watson trees

Let $\mathscr{U} = \{\emptyset\} \cup \{u_1 \cdots u_n : n \ge 1, u_i \in \mathbb{Z}_+\}$ be the set of canonical labels of plane trees. Let $\mu = (\mu_k, k \in \mathbb{N})$ be an offspring distribution and $(\xi_u, u \in \mathscr{U})$ be iid with law μ .

Galton-Watson trees

$$\Theta = \{\emptyset\} \cup \{uj \in \mathscr{U} : j \leq \xi_u\}.$$

Conditioned Galton-Watson trees

$$\Theta_n \stackrel{d}{=} \Theta$$
 conditioned on having *n* vertices

Proposition

 Θ conditioned on having degree sequence *s* is uniform on trees with degree sequence *s*.

- David Aldous, The continuum random tree. II. An overview, Stochastic analysis (Durham, 1990), London Math. Soc. Lecture Note Ser., vol. 167, Cambridge Univ. Press, Cambridge, 1991, pp. 23–70. MR: 1166406
- ↑, The continuum random tree. III, Ann. Probab. 21 (1993), no. 1, 248–289. MR: 1207226
 - M. Emilia Caballero, José Luis Pérez Garmendia, and Gerónimo Uribe Bravo, A Lamperti-type representation of continuous-state branching processes with immigration, Ann. Probab. 41 (2013), no. 3A, 1585–1627. MR: 3098685
- ↑, Affine processes on R^m₊ × Rⁿ and multiparameter time changes, arXiv e-prints (2015), To appear in Ann. Inst. H. Poincaré Probab. Statist.
- Michael Drmota and Bernhard Gittenberger, On the profile of random trees, Random Structures Algorithms 10 (1997), no. 4, 421–451. MR: 1608230 (99c:05176)
- Anders Grimvall, *On the convergence of sequences of branching processes*, Ann. Probability **2** (1974), 1027–1045. MR: 0362529

- Th. Jeulin and M. Yor (eds.), Grossissements de filtrations: exemples et applications, Lecture Notes in Mathematics, vol. 1118, Springer-Verlag, Berlin, 1985. MR: 884713

Jim Pitman, *The SDE solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree or forest*, Ann. Probab. **27** (1999), no. 1, 261–283. MR: 1681110 (2000b:60200)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <