On the growth of grid classes and staircases of permutations

Vince Vatter University of Florida Gainesville, FL

Joint work with Michael Albert and Jay Pantone

Workshop in Analytic and Probabilistic Combinatorics October 25, 2016

●0000000	GRID CLASSES 0000	OO	00000
The Contai	inment Order		
	• • •		

- A downset in this order is a *permutation class*.
- Every permutation class C can be defined by the minimal set of permutations B it *avoids* (its *basis*):

 $\mathfrak{C} = Av(B) = \{\pi \ : \ \beta \nleq \pi \text{ for all } \beta \in B\}.$

36285714

- ► C_n is the set of permutations in C of length n.
- ► The generating function of C is

25413

$$\sum_{n\in\mathbb{N}}|\mathfrak{C}_n|x^n=\sum_{\pi\in\mathfrak{C}}x^{|\pi|}.$$

Background	GRID CLASSES	Applications	Merges
0000000	0000	00	00000

GROWTH RATES

► If the limit exists, the *growth rate* of C is

$$\operatorname{gr}(\mathfrak{C}) = \lim_{n \to \infty} \sqrt[n]{|\mathfrak{C}_n|}.$$

• Otherwise we settle for the *upper growth rate*,

$$\overline{gr}(\mathcal{C}) = \limsup_{n \to \infty} \sqrt[n]{|\mathcal{C}_n|}.$$

The Marcus–Tardos Theorem. *Every proper permutation class has a finite upper growth rate.*

Background	Grid Classes	Applications	Merges
0000000	0000	00	00000
C (

Sums and Skew Sums

$$\pi \oplus \sigma = \boxed{\sigma} \qquad \qquad \pi \ominus \sigma = \boxed{\pi} \qquad \qquad \sigma$$

- The class C is *sum closed* if $\pi \oplus \sigma \in C$ for all $\pi, \sigma \in C$.
- ► If the class C is sum closed then

 $|\mathfrak{C}_m||\mathfrak{C}_n|\leqslant |\mathfrak{C}_{m+n}|\text{,}$

so $\{|\mathcal{C}_n|\}$ is supermultiplicative.

- By Fekete's Lemma, sum closed classes always have growth rates (Arratia 1999).
- Analogously, skew closed classes have growth rates.
- ► Thus all classes with singleton bases have growth rates.

Background	Grid Classes	Applications	Merges
0000000	0000	00	00000

- Enumeration: 1, 1, 1, 1, 1,
- Generating function: $1 + x + x^2 + \cdots = \frac{1}{1 x}$.
- ► Growth rate: 1.

Background	Grid Classes	Applications	Merges
00000000	0000	00	00000

Av(231, 312, 321)

- Enumeration: 1, 2, 3, 5, 8, ... (empty permutation ignored — Fibonacci numbers).
- Generating function: $\frac{1}{1-x-x^2}$.
- Growth rate: $\phi \approx 1.62$ (golden ratio).

Background	Grid Classes	Applications	Merges
00000000	0000	00	00000

► Enumeration: 1, 2, 5, 14, 42, ... (Catalan numbers).

• Generating function:
$$\frac{1-\sqrt{1-4x}}{2x}$$

► Growth rate: 4.

Background	Grid Classes	Applications	Merges
00000000	0000	00	00000

- ► Enumeration: 1, 2, 6, 23, 103, ... (only 36 terms known).
- Generating function: ?
- Growth rate: between 9.81 and 13.74, maybe around 11.60? (Bevan, Bóna, and Guttmann, improvements planned for 2017.)

Background	Grid Classes	Applications	Merges
0000000	0000	00	00000
$Av(k \cdots 21)$			

- Generating function: D-finite, due to Gessel 1990.
- Growth rate: $(k-1)^2$, due to Regev 1981.

Background	Grid Classes	Applications	Merges
0000000	0000	00	00000
$Av(k \cdots 21)$			

- Generating function: D-finite, due to Gessel 1990.
- Growth rate: $(k-1)^2$, due to Regev 1981.
 - ► Upper bound? Easy: the entries of π ∈ Av(k···21) can be partitioned in k − 1 increasing subsequences. Form two words, one reading left-to-right, the other bottom-to-top.
 - Lower bound? One not-easy way was done by Bóna 2005.

Background	GRID CLASSES	Applications	Merges
0000000	0000	00	00000

The Definition

The *grid class* of a matrix of permutation classes consists of all permutations which can be gridded so that the subpermutations in the cells lie in the respective classes.

Question. *How does the growth rate of a grid class depend on those of its cells? (Assuming they have growth rates.)*

Answered by Bevan in 2015 for monotone cells.

Background	GRID CLASSES	Applications	Merges
0000000	0000	00	00000

The Theorem

Theorem (Albert and V). Let M be a $t \times u$ matrix of permutation classes, each with a proper growth rate, and define the matrix Γ of the same size by

$$\Gamma_{k,\ell} = \sqrt{gr(\mathcal{M}_{k,\ell})}.$$

The growth rate of $Grid(\mathcal{M})$ is equal to the greatest eigenvalue of $\Gamma^{\mathsf{T}}\Gamma$ (or equivalently, of $\Gamma\Gamma^{\mathsf{T}}$).

Background	Grid Classes	Applications	Merges
0000000	0000	00	00000

$$\in \operatorname{Grid} \left(\begin{array}{ccc} \operatorname{Av}(12) & \emptyset & \operatorname{Av}(21) \\ \operatorname{Av}(21) & \operatorname{Av}(321) & \emptyset \end{array} \right)$$

Background	Grid Classes	Applications	Merges
00000000	0000	00	00000
A Brief Ske	ТСН		

A given permutation in $Grid(\mathcal{M})$ has only polynomially many *griddings*, so we can count *gridded permutations* instead.

Background	Grid Classes	Applications	Merges
0000000	0000	00	00000
	C		

A given permutation in $Grid(\mathcal{M})$ has only polynomially many *griddings*, so we can count *gridded permutations* instead.

Background	Grid Classes	Applications	Merges
00000000	0000	00	00000

The matrix A (of the same size as \mathcal{M}) is *admissible* if $A_{k,\ell} = 0$ whenever $\mathcal{M}_{k,\ell} = \emptyset$.

For admissible A, define

$$\operatorname{Grid}_{A}^{\sharp}(\mathcal{M}) = \begin{array}{l} \text{ \# of gridded permutations in } \operatorname{Grid}(\mathcal{M}) \\ \text{ with } A_{k,\ell} \text{ entries in cell } (k,\ell). \end{array}$$

For a given value of n there are only polynomial many admissible matrices which sum to n, so it suffices to find the admissible matrix which maximizes $|\operatorname{Grid}_{A}^{\sharp}(\mathcal{M})|$.

Background	GRID CLASSES	Applications	Merges
0000000	0000	00	00000

$$\begin{split} |\operatorname{Grid}_{A}^{\sharp}(\mathfrak{M})| &= \begin{array}{c} \prod_{k=1}^{t} \left(\sum_{A_{k, \bullet}} A_{k, \bullet} \right) \\ \times \prod_{\ell=1}^{u} \left(\sum_{A_{1, \ell}, \dots, A_{k, \ell}} \right) \\ \times \prod_{\substack{k, \ell \\ \mathcal{M}_{k, \ell \neq \emptyset}}} (\mathfrak{M}_{k, \ell})_{A_{k, \ell}}. \end{split}$$

Background	Grid Classes	Applications	Merges
0000000	0000	00	00000

$$\begin{split} |\operatorname{Grid}_{A}^{\sharp}(\mathfrak{M})| &= \begin{array}{c} \prod_{k=1}^{t} \left(\sum_{A_{k,\bullet}} A_{k,\bullet} \right) \\ \times \prod_{\ell=1}^{u} \left(\sum_{A_{1,\ell},\dots,A_{k,\ell}} \right) \\ \times \prod_{\substack{k,\ell \\ \mathcal{M}_{k,\ell\neq\emptyset}}} (\mathfrak{M}_{k,\ell})_{A_{k,\ell}}. \end{split}$$

Fast-Forwarding to the End

- Using a compactness argument, we translate to maximizing a continuous function.
- ► We then apply Lagrange multipliers (actually to the logarithm of this function).
- This shows that the growth rate of Grid(M) is equal to the square of the largest singular value of Γ, i.e., the largest eigenvalue of Γ^TΓ or ΓΓ^T.

Background	Grid Classes	Applications	Merges
0000000	0000	00	00000

The Theorem

Theorem (Albert and V). Let \mathcal{M} be a $t \times u$ matrix of permutation classes, each with a proper growth rate, and define the matrix Γ of the same size by

$$\Gamma_{k,\ell} = \sqrt{gr(\mathcal{M}_{k,\ell})}.$$

The growth rate of $Grid(\mathcal{M})$ is equal to the greatest eigenvalue of $\Gamma^{\mathsf{T}}\Gamma$ (or equivalently, of $\Gamma\Gamma^{\mathsf{T}}$).

Background	Grid Classes	Applications	Merges
		● ○	00000

The Lower Bound on $gr(Av(k \cdots 21))$

 $Av(k \cdots 21)$ contains

$$Grid \left(\begin{array}{ccc} & \ddots & \ddots \\ & Av(21) & Av((k-1)\cdots 21) \\ Av(21) & Av((k-1)\cdots 21) \end{array} \right) \cdot$$

(The Av(21) cells may be taken to contain the left-to-right maxima.)

$$\Gamma = \left(\begin{array}{ccc} & \ddots & \ddots \\ & 1 & k-2 \\ & 1 & k-2 \end{array}\right).$$

The largest eigenvalues of $\Gamma\Gamma^{T}$ tend to $(k-1)^{2}$ (as we let Γ grow).

Background	Grid Classes	Applications	Merges
		00	

A Mystery

For all numbers of cells.

Background	Grid Classes	Applications	Merges
0000000	0000	0.	00000

A Mystery

For all numbers of cells. Yet ...

(Approximation of 4.5189 due to Jay / differential approximates.)

The General $(\mathcal{C}, \mathcal{D})$ Staircase

Assuming C and D have proper growth rates, $\Gamma\Gamma^{T}$ is the tridiagonal Toeplitz matrix defined by

$$(\Gamma\Gamma^{\mathsf{T}})_{k,\ell} = \begin{cases} gr(\mathfrak{C}) + gr(\mathfrak{D}) & \text{if } k = \ell, \\ \sqrt{gr(\mathfrak{C}) gr(\mathfrak{D})} & \text{if } |k - \ell| = 1, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

A linear algebra result shows that the growth rate of the $(\mathcal{C}, \mathcal{D})$ staircase is equal to

$$(\sqrt{\operatorname{gr}(\mathcal{C})} + \sqrt{\operatorname{gr}(\mathcal{D})})^2.$$

Background	Grid Classes	Applications	Merges
0000000	0000	00	00000

$\mathfrak{C}\odot\mathfrak{D}$

The merge of \mathbb{C} and \mathcal{D} : all permutations whose entries can be colored red and blue so that the red subsequence is order isomorphic to a member of \mathbb{C} and the blue subsequence is order isomorphic to a member of \mathcal{D} .

Background	GRID CLASSES	Applications	Merges
0000000	0000	00	00000

$\mathfrak{C}\odot\mathfrak{D}$

The merge of \mathcal{C} and \mathcal{D} : all permutations whose entries can be colored red and blue so that the red subsequence is order isomorphic to a member of \mathcal{C} and the blue subsequence is order isomorphic to a member of \mathcal{D} .

Obvious bound:

$$\begin{split} gr(\mathcal{C} \odot \mathcal{D}) &\leqslant \quad \sum_{i=0}^{n} \binom{n}{i}^{2} |\mathcal{C}_{i}| |\mathcal{D}_{n-i}|, \\ &\leqslant \quad \left(\sum_{i=0}^{n} \binom{n}{i} \sqrt{|\mathcal{C}_{i}| |\mathcal{D}_{n-i}|}\right)^{2} \end{split}$$

Using the Binomial Theorem (assuming all growth rates below exist):

$$\operatorname{gr}(\mathfrak{C} \odot \mathfrak{D}) \leqslant \left(\sqrt{\operatorname{gr}(\mathfrak{C})} + \sqrt{\operatorname{gr}(\mathfrak{D})}\right)^2.$$

Background	Grid Classes	Applications	Merges
			00000

When is This the Answer?

If both ${\mathfrak C}$ and ${\mathfrak D}$ are sum closed then:

- Both $gr(\mathcal{C})$ and $gr(\mathcal{D})$ exist.
- $\mathcal{C} \odot \mathcal{D}$ contains the $(\mathcal{C}, \mathcal{D})$ staircase:

Corollary. *If both* \mathbb{C} *and* \mathbb{D} *are sum closed (or by symmetry, both are skew closed) then* $gr(\mathbb{C} \odot \mathbb{D})$ *exists and equals*

$$\left(\sqrt{\operatorname{gr}(\mathcal{C})} + \sqrt{\operatorname{gr}(\mathcal{D})}\right)^2$$

Background	Grid Classes	Applications	Merges
			00000

WHEN IS THIS THE ANSWER?

If ${\mathfrak C}$ is sum closed and ${\mathfrak D}$ is skew closed then:

- Both $gr(\mathcal{C})$ and $gr(\mathcal{D})$ exist.
- $\mathcal{C} \odot \mathcal{D}$ contains the $(\mathcal{C}, \mathcal{D})$ spiral staircase:

Corollary. *If* C *is sum closed and* D *is skew closed then* $gr(C \odot D)$ *exists and equals*

$$\left(\sqrt{\operatorname{gr}(\mathcal{C})} + \sqrt{\operatorname{gr}(\mathcal{D})}\right)^2$$

When is This the Answer?

Recall: Classes defined by avoiding a single pattern, the *principal classes*, are always either sum closed or skew closed.

Corollary. For all permutations β and γ , $gr(Av(\beta) \odot Av(\gamma))$ exists and equals

$$\left(\sqrt{\operatorname{gr}(\operatorname{Av}(\beta))} + \sqrt{\operatorname{gr}(\operatorname{Av}(\gamma))}\right)^2$$
.

Background	Grid Classes	Applications	Merges
00000000	0000	00	00000

CONCLUSION

Question. Does

$$\operatorname{gr}(\mathfrak{C}) = \lim_{n \to \infty} \sqrt[n]{|\mathfrak{C}_n|}$$

exist for all proper permutation classes C?

Background	Grid Classes	Applications	Merges
00000000	0000	00	0000●

Conclusion

Question. Does

$$\operatorname{gr}(\mathfrak{C}) = \lim_{n \to \infty} \sqrt[n]{|\mathfrak{C}_n|}$$

exist for all proper permutation classes C?

Question. *Does*

$$\operatorname{gr}(\mathfrak{C} \odot \mathfrak{D}) = \left(\sqrt{\operatorname{gr}(\mathfrak{C})} + \sqrt{\operatorname{gr}(\mathfrak{D})}\right)^2$$

for all permutation classes C and D?

Background	Grid Classes	Applications	Merges
00000000	0000	00	00000

Conclusion

Question. Does

$$\operatorname{gr}(\operatorname{\mathcal{C}}) = \lim_{n \to \infty} \sqrt[n]{|\operatorname{\mathcal{C}}_n|}$$

exist for all proper permutation classes C?

Question. *Does*

$$\operatorname{gr}(\mathfrak{C} \odot \mathfrak{D}) = \left(\sqrt{\operatorname{gr}(\mathfrak{C})} + \sqrt{\operatorname{gr}(\mathfrak{D})}\right)^2$$

for all permutation classes C and D?

Thank you.