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Background Grid Classes Applications Merges

The Containment Order
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25413 36285714

I A downset in this order is a permutation class.
I Every permutation class C can be defined by the minimal

set of permutations B it avoids (its basis):

C = Av(B) = {π : β 66 π for all β ∈ B}.

I Cn is the set of permutations in C of length n.
I The generating function of C is∑

n∈N
|Cn|x

n =
∑
π∈C

x|π|.
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Growth Rates

I If the limit exists, the growth rate of C is

gr(C) = lim
n→∞ n

√
|Cn|.

I Otherwise we settle for the upper growth rate,

gr(C) = lim sup
n→∞

n
√
|Cn|.

The Marcus–Tardos Theorem. Every proper permutation class has
a finite upper growth rate.
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Sums and Skew Sums

π⊕ σ =
π

σ π	 σ = π

σ

I The class C is sum closed if π⊕ σ ∈ C for all π,σ ∈ C.
I If the class C is sum closed then

|Cm||Cn| 6 |Cm+n|,

so {|Cn|} is supermultiplicative.
I By Fekete’s Lemma, sum closed classes always have

growth rates (Arratia 1999).
I Analogously, skew closed classes have growth rates.
I Thus all classes with singleton bases have growth rates.
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Av(21)

I Enumeration: 1, 1, 1, 1, 1, . . . .

I Generating function: 1 + x+ x2 + · · · = 1
1 − x

.

I Growth rate: 1.
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Av(231, 312, 321)

I Enumeration: 1, 2, 3, 5, 8, . . . (empty permutation ignored
— Fibonacci numbers).

I Generating function:
1

1 − x− x2 .

I Growth rate: φ ≈ 1.62 (golden ratio).
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Av(321)

I Enumeration: 1, 2, 5, 14, 42, . . . (Catalan numbers).

I Generating function:
1 −
√

1 − 4x
2x

.

I Growth rate: 4.
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Av(4231)

I Enumeration: 1, 2, 6, 23, 103, . . . (only 36 terms known).
I Generating function: ?
I Growth rate: between 9.81 and 13.74, maybe around 11.60?

(Bevan, Bóna, and Guttmann, improvements planned for
2017.)
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Av(k · · · 21)

I Generating function: D-finite, due to Gessel 1990.
I Growth rate: (k− 1)2, due to Regev 1981.

I Upper bound? Easy: the entries of π ∈ Av(k · · · 21) can be
partitioned in k− 1 increasing subsequences. Form two
words, one reading left-to-right, the other bottom-to-top.

I Lower bound? One not-easy way was done by Bóna 2005.
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The Defintion
The grid class of a matrix of permutation classes consists of all
permutations which can be gridded so that the subpermutations
in the cells lie in the respective classes.

•
•

•

•

•

•

••

••

•
•

∈ Grid
(

Av(12) ∅ Av(21)
Av(21) Av(321) ∅

)

Question. How does the growth rate of a grid class depend on those
of its cells? (Assuming they have growth rates.)

Answered by Bevan in 2015 for monotone cells.
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The Theorem

Theorem (Albert and V). Let M be a t × u matrix of permutation
classes, each with a proper growth rate, and define the matrix Γ of the
same size by

Γk,` =
√
gr(Mk,`).

The growth rate of Grid(M) is equal to the greatest eigenvalue of ΓT Γ
(or equivalently, of ΓΓT ).
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A Brief Sketch
•
•

•

•
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∈ Grid
(

Av(12) ∅ Av(21)
Av(21) Av(321) ∅

)

A given permutation in Grid(M) has only polynomially many
griddings, so we can count gridded permutations instead.
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A Brief Sketch

The matrix A (of the same size as M) is admissible if Ak,` = 0
whenever Mk,` = ∅.

For admissible A, define

Grid]
A(M) =

# of gridded permutations in Grid(M)
with Ak,` entries in cell (k, `).

For a given value ofn there are only polynomial many admissible
matrices which sum to n, so it suffices to find the admissible
matrix which maximizes |Grid]

A(M)|.
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A Brief Sketch

|Grid]
A(M)| =

∏t
k=1

( ∑
Ak,•

Ak,1,...,Ak,u

)
×
∏u
`=1
( ∑

A•,`
A1,`,...,At,`

)
×
∏

k,`
Mk,`,∅

(Mk,`)Ak,` .

Fast-Forwarding to the End
I Using a compactness argument, we translate to

maximizing a continuous function.
I We then apply Lagrange multipliers (actually to the

logarithm of this function).
I This shows that the growth rate of Grid(M) is equal to the

square of the largest singular value of Γ , i.e., the largest
eigenvalue of ΓT Γ or ΓΓT .
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The Lower Bound on gr(Av(k · · · 21))

Av(k · · · 21) contains

Grid

 ...
...

Av(21) Av((k− 1) · · · 21)
Av(21) Av((k− 1) · · · 21)

.

(The Av(21) cells may be taken to contain the left-to-right
maxima.)

Γ =

 ...
...

1 k− 2
1 k− 2

.

The largest eigenvalues of ΓΓT tend to (k−1)2 (as we let Γ grow).
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A Mystery

gr

  = gr

 
For all numbers of cells.

Yet...

4 = gr


. . . . . .

 < gr


. . . . . .

 ≈ 4.5189.

(Approximation of 4.5189 due to Jay / differential approximates.)
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The General (C,D) Staircase

C D
C D

C D
C D

C D
. . . . . .

Assuming C and D have proper growth rates, ΓΓT is the
tridiagonal Toeplitz matrix defined by

(ΓΓT )k,` =


gr(C) + gr(D) if k = `,√
gr(C)gr(D) if |k− `| = 1, and

0 otherwise.

A linear algebra result shows that the growth rate of the (C,D)
staircase is equal to

(
√
gr(C) +

√
gr(D))2.
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C�D
The merge of C and D: all permutations whose entries can be
colored red and blue so that the red subsequence is order
isomorphic to a member of C and the blue subsequence is order
isomorphic to a member of D.

Obvious bound:

gr(C�D) 6
n∑
i=0

(
n

i

)2

|Ci||Dn−i|,

6

(
n∑
i=0

(
n

i

)√
|Ci||Dn−i|

)2

.

Using the Binomial Theorem (assuming all growth rates below
exist):

gr(C�D) 6
(√

gr(C) +
√
gr(D)

)2
.
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When is This the Answer?
If both C and D are sum closed then:
I Both gr(C) and gr(D) exist.
I C�D contains the (C,D) staircase:

C D
C D

C D
C D

C D
. . . . . .

Corollary. If both C and D are sum closed (or by symmetry, both are
skew closed) then gr(C�D) exists and equals(√

gr(C) +
√
gr(D)

)2
.
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When is This the Answer?
If C is sum closed and D is skew closed then:
I Both gr(C) and gr(D) exist.
I C�D contains the (C,D) spiral staircase:

C
C

C
C

CD
D

D
D

. . .

...

...

. . .

Corollary. If C is sum closed and D is skew closed then gr(C�D)
exists and equals (√

gr(C) +
√
gr(D)

)2
.
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When is This the Answer?

Recall: Classes defined by avoiding a single pattern, the
principal classes, are always either sum closed or skew closed.

Corollary. For all permutations β and γ, gr(Av(β)�Av(γ)) exists
and equals (√

gr(Av(β)) +
√
gr(Av(γ))

)2
.
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Conclusion

Question. Does
gr(C) = lim

n→∞ n
√

|Cn|

exist for all proper permutation classes C?

Question. Does

gr(C�D) =
(√

gr(C) +
√
gr(D)

)2

for all permutation classes C and D?

Thank you.
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