On the growth of grid classes and staircases of permutations

Vince Vatter
University of Florida
Gainesville, FL

Joint work with Michael Albert and Jay Pantone

Workshop in Analytic and Probabilistic Combinatorics
October 25, 2016

The Containment Order

- A downset in this order is a permutation class.
- Every permutation class \mathcal{C} can be defined by the minimal set of permutations B it avoids (its basis):

$$
\mathcal{C}=\operatorname{Av}(B)=\{\pi: \beta \nless \pi \text { for all } \beta \in B\} .
$$

- \mathcal{C}_{n} is the set of permutations in \mathcal{C} of length n.
- The generating function of \mathcal{C} is

$$
\sum_{n \in \mathbb{N}}\left|\mathcal{C}_{n}\right| x^{n}=\sum_{\pi \in \mathcal{C}} x^{|\pi|}
$$

Growth Rates

- If the limit exists, the growth rate of \mathcal{C} is

$$
\operatorname{gr}(\mathcal{C})=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\mathcal{C}_{n}\right|}
$$

- Otherwise we settle for the upper growth rate,

$$
\overline{\operatorname{gr}}(\mathcal{C})=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|\mathcal{C}_{n}\right|}
$$

The Marcus-Tardos Theorem. Every proper permutation class has a finite upper growth rate.

Sums and Skew Sums

$$
\pi \oplus \sigma=\begin{array}{|c|}
\boxed{\sigma}
\end{array} \quad \pi \ominus \sigma=\begin{array}{|c|}
\hline \pi \\
\hline
\end{array}
$$

- The class \mathcal{C} is sum closed if $\pi \oplus \sigma \in \mathcal{C}$ for all $\pi, \sigma \in \mathcal{C}$.
- If the class \mathcal{C} is sum closed then

$$
\left|\mathcal{C}_{\mathfrak{m}}\right|\left|\mathcal{C}_{\mathfrak{n}}\right| \leqslant\left|\mathcal{C}_{\mathfrak{m}+\mathfrak{n}}\right|
$$

so $\left\{\left|\mathcal{C}_{n}\right|\right\}$ is supermultiplicative.

- By Fekete's Lemma, sum closed classes always have growth rates (Arratia 1999).
- Analogously, skew closed classes have growth rates.
- Thus all classes with singleton bases have growth rates.

$\operatorname{Av}(21)$

- Enumeration: 1, 1, 1, 1, 1, \ldots.
- Generating function: $1+x+x^{2}+\cdots=\frac{1}{1-x}$.
- Growth rate: 1.

$\operatorname{Av}(231,312,321)$

- Enumeration: 1, 2, 3, 5, 8, ... (empty permutation ignored - Fibonacci numbers).
- Generating function: $\frac{1}{1-x-x^{2}}$.
- Growth rate: $\phi \approx 1.62$ (golden ratio).

$\operatorname{Av}(321)$

- Enumeration: 1, 2, 5, 14, 42, ... (Catalan numbers).
- Generating function: $\frac{1-\sqrt{1-4 x}}{2 x}$.
- Growth rate: 4.

$\operatorname{Av}(4231)$

- Enumeration: 1, 2, 6, 23, 103, ... (only 36 terms known).
- Generating function: ?
- Growth rate: between 9.81 and 13.74, maybe around 11.60 ? (Bevan, Bóna, and Guttmann, improvements planned for 2017.)

$\operatorname{Av}(\mathrm{k} \cdot \cdots 21)$

- Generating function: D-finite, due to Gessel 1990.
- Growth rate: $(\mathrm{k}-1)^{2}$, due to Regev 1981.

$\operatorname{Av}(\mathrm{k} \cdot \cdots 21)$

- Generating function: D-finite, due to Gessel 1990.
- Growth rate: $(\mathrm{k}-1)^{2}$, due to Regev 1981.
- Upper bound? Easy: the entries of $\pi \in \operatorname{Av}(\mathrm{k} \ldots 21)$ can be partitioned in $k-1$ increasing subsequences. Form two words, one reading left-to-right, the other bottom-to-top.
- Lower bound? One not-easy way was done by Bóna 2005.

The Defintion

The grid class of a matrix of permutation classes consists of all permutations which can be gridded so that the subpermutations in the cells lie in the respective classes.

Question. How does the growth rate of a grid class depend on those of its cells? (Assuming they have growth rates.)

Answered by Bevan in 2015 for monotone cells.

The Theorem

Theorem (Albert and V). Let \mathcal{M} be a $\mathrm{t} \times \mathrm{u}$ matrix of permutation classes, each with a proper growth rate, and define the matrix Γ of the same size by

$$
\Gamma_{\mathrm{k}, \ell}=\sqrt{\operatorname{gr}\left(\mathcal{M}_{\mathrm{k}, \ell}\right)}
$$

The growth rate of $\operatorname{Grid}(\mathcal{M})$ is equal to the greatest eigenvalue of $\Gamma^{\top} \Gamma$ (or equivalently, of $\Gamma \Gamma^{\top}$).

A Brief Sketch

A Brief Sketch

A given permutation in $\operatorname{Grid}(\mathcal{M})$ has only polynomially many griddings, so we can count gridded permutations instead.

A Brief Sketch

A given permutation in $\operatorname{Grid}(\mathcal{M})$ has only polynomially many griddings, so we can count gridded permutations instead.

A Brief Sketch

The matrix \mathcal{A} (of the same size as \mathcal{M}) is admissible if $A_{k, \ell}=0$ whenever $\mathcal{M}_{\mathrm{k}, \ell}=\emptyset$.

For admissible A, define

$$
\operatorname{Grid}_{\mathcal{A}}^{\#}(\mathcal{M})=\begin{aligned}
& \# \text { of gridded permutations in } \operatorname{Grid}(\mathcal{M}) \\
& \quad \text { with } A_{k, \ell} \text { entries in cell }(\mathrm{k}, \ell) .
\end{aligned}
$$

For a given value of n there are only polynomial many admissible matrices which sum to n, so it suffices to find the admissible matrix which maximizes $\left|\operatorname{Grid}_{A}^{\sharp}(\mathcal{M})\right|$.

A Brief Sketch

$$
\begin{aligned}
& \prod_{k=1}^{t}\left(\sum_{A_{k, 1}, \ldots, A_{k, u}} A_{k}\right) \\
& \left|\operatorname{Grid}_{\mathcal{A}}^{\sharp}(\mathcal{M})\right|=\quad \times \prod_{\ell=1}^{u}\left(\sum_{\mathcal{A}_{1, \ell}, \ldots, \hat{A}_{t, \ell}}^{\mathcal{A}_{\ell}}\right) \\
& \times \prod_{\substack{\mathcal{M}_{k, \ell}, \ell \in \ell}}\left(\mathcal{M}_{k, \ell}\right)_{\mathcal{A}_{k, \ell}} .
\end{aligned}
$$

A Brief Sketch

$$
\begin{aligned}
& \prod_{k=1}^{t}\left(\sum_{A_{k, 1} \cdots, \ldots, A_{k, u}}^{\sum A_{k}}\right) \\
& \left|\operatorname{Grid}_{A}^{\#}(\mathcal{M})\right|=\quad \times \prod_{\ell=1}^{u}\left(\sum_{\mathcal{A}_{1, \ell}, \ldots, \hat{A}_{t, \ell}}^{A_{\ell}}\right) \\
& \times \prod_{\substack{\mathcal{M}_{k, \ell \neq \ell}^{k, \ell}}}\left(\mathcal{M}_{k, \ell}\right)_{\mathcal{A}_{k, \ell}} .
\end{aligned}
$$

Fast-Forwarding to the End

- Using a compactness argument, we translate to maximizing a continuous function.
- We then apply Lagrange multipliers (actually to the logarithm of this function).
- This shows that the growth rate of $\operatorname{Grid}(\mathcal{M})$ is equal to the square of the largest singular value of Γ, i.e., the largest eigenvalue of $\Gamma^{\top} \Gamma$ or $\Gamma \Gamma^{\top}$.

The Theorem

Theorem (Albert and V). Let \mathcal{M} be a $\mathrm{t} \times \mathfrak{u}$ matrix of permutation classes, each with a proper growth rate, and define the matrix Γ of the same size by

$$
\Gamma_{\mathrm{k}, \ell}=\sqrt{\mathrm{gr}\left(\mathcal{M}_{\mathrm{k}, \ell}\right)} .
$$

The growth rate of $\operatorname{Grid}(\mathcal{M})$ is equal to the greatest eigenvalue of $\Gamma^{\top} \Gamma$ (or equivalently, of $\Gamma \Gamma^{\mathrm{T}}$).

The Lower Bound on gr $\operatorname{Av}(\mathrm{k} \cdots 21))$

$\operatorname{Av}(\mathrm{k} \cdot \mathrm{21})$ contains

$$
\text { Grid }\left(\begin{array}{ccc}
& & . \\
\operatorname{Av}(21) & \operatorname{Av}((k-1) \cdots 21) & .
\end{array}\right) .
$$

(The $\operatorname{Av}(21)$ cells may be taken to contain the left-to-right maxima.)

$$
\Gamma=\left(\begin{array}{cccc}
& & . & . \\
& 1 & k-2 & \\
1 & k-2 & &
\end{array}\right)
$$

The largest eigenvalues of $\Gamma \Gamma^{\top}$ tend to $(k-1)^{2}$ (as we let Γ grow).

A Mystery

For all numbers of cells.

A Mystery

For all numbers of cells.Yet...

(Approximation of 4.5189 due to Jay / differential approximates.)

The General ($\mathcal{C}, \mathcal{D})$ Staircase

Assuming \mathcal{C} and \mathcal{D} have proper growth rates, $\Gamma \Gamma^{\top}$ is the tridiagonal Toeplitz matrix defined by

$$
\left(\Gamma \Gamma^{\mathrm{T}}\right)_{\mathrm{k}, \ell}= \begin{cases}\operatorname{gr}(\mathcal{C})+\operatorname{gr}(\mathcal{D}) & \text { if } k=\ell, \\ \sqrt{\operatorname{gr}(\mathcal{C}) \operatorname{gr}(\mathcal{D})} & \text { if }|\mathrm{k}-\ell|=1, \text { and } \\ 0 & \text { otherwise. }\end{cases}
$$

A linear algebra result shows that the growth rate of the ($(\mathcal{C}, \mathcal{D})$ staircase is equal to

$$
(\sqrt{\operatorname{gr}(\mathcal{C})}+\sqrt{\operatorname{gr}(\mathcal{D})})^{2} .
$$

$\mathcal{C} \odot \mathcal{D}$
The merge of \mathcal{C} and \mathcal{D} : all permutations whose entries can be colored red and blue so that the red subsequence is order isomorphic to a member of \mathcal{C} and the blue subsequence is order isomorphic to a member of \mathcal{D}.
$\mathcal{C} \odot \mathcal{D}$
The merge of \mathcal{C} and \mathcal{D} : all permutations whose entries can be colored red and blue so that the red subsequence is order isomorphic to a member of \mathcal{C} and the blue subsequence is order isomorphic to a member of \mathcal{D}.
Obvious bound:

$$
\begin{aligned}
\operatorname{gr}(\mathcal{C} \odot \mathcal{D}) & \leqslant \sum_{i=0}^{n}\binom{n}{i}^{2}\left|\mathcal{C}_{i} \| \mathcal{D}_{n-i}\right|, \\
& \leqslant\left(\sum_{i=0}^{n}\binom{n}{i} \sqrt{\left|\mathcal{C}_{i} \| \mathcal{D}_{n-i}\right|}\right)^{2} .
\end{aligned}
$$

Using the Binomial Theorem (assuming all growth rates below exist):

$$
\operatorname{gr}(\mathcal{C} \odot \mathcal{D}) \leqslant(\sqrt{\operatorname{gr}(\mathcal{C})}+\sqrt{\operatorname{gr}(\mathcal{D})})^{2} .
$$

When is This the Answer?

If both \mathcal{C} and \mathcal{D} are sum closed then:

- Both $\operatorname{gr}(\mathcal{C})$ and $\operatorname{gr}(\mathcal{D})$ exist.
- $\mathcal{C} \odot \mathcal{D}$ contains the $(\mathcal{C}, \mathcal{D})$ staircase:

Corollary. If both \mathcal{C} and \mathcal{D} are sum closed (or by symmetry, both are skew closed) then $\operatorname{gr}(\mathcal{C} \odot \mathcal{D})$ exists and equals

$$
(\sqrt{\operatorname{gr}(\mathcal{C})}+\sqrt{\operatorname{gr}(\mathcal{D})})^{2}
$$

When is This the Answer?

If \mathcal{C} is sum closed and \mathcal{D} is skew closed then:

- Both $\operatorname{gr}(\mathcal{C})$ and $\operatorname{gr}(\mathcal{D})$ exist.
- $\mathcal{C} \odot \mathcal{D}$ contains the $(\mathcal{C}, \mathcal{D})$ spiral staircase:

Corollary. If \mathcal{C} is sum closed and \mathcal{D} is skew closed then $\operatorname{gr}(\mathcal{C} \odot \mathcal{D})$ exists and equals

$$
(\sqrt{\mathrm{gr}(\mathcal{C})}+\sqrt{\mathrm{gr}(\mathcal{D})})^{2}
$$

When is This the Answer?

Recall: Classes defined by avoiding a single pattern, the principal classes, are always either sum closed or skew closed.

Corollary. For all permutations β and $\gamma, \operatorname{gr}(\operatorname{Av}(\beta) \odot \operatorname{Av}(\gamma))$ exists and equals

$$
(\sqrt{\operatorname{gr}(\operatorname{Av}(\beta))}+\sqrt{\operatorname{gr}(\operatorname{Av}(\gamma))})^{2}
$$

Conclusion

Question. Does

$$
\operatorname{gr}(\mathcal{C})=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\mathcal{C}_{n}\right|}
$$

exist for all proper permutation classes \mathfrak{C} ?

Conclusion

Question. Does

$$
\operatorname{gr}(\mathcal{C})=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\mathcal{C}_{n}\right|}
$$

exist for all proper permutation classes \mathfrak{C} ?
Question. Does

$$
\operatorname{gr}(\mathcal{C} \odot \mathcal{D})=(\sqrt{\operatorname{gr}(\mathcal{C})}+\sqrt{\operatorname{gr}(\mathcal{D})})^{2}
$$

for all permutation classes \mathcal{C} and \mathcal{D} ?

Conclusion

Question. Does

$$
\operatorname{gr}(\mathcal{C})=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\mathcal{C}_{n}\right|}
$$

exist for all proper permutation classes \mathfrak{C} ?
Question. Does

$$
\operatorname{gr}(\mathcal{C} \odot \mathcal{D})=(\sqrt{\operatorname{gr}(\mathcal{C})}+\sqrt{\operatorname{gr}(\mathcal{D})})^{2}
$$

for all permutation classes \mathcal{C} and \mathcal{D} ?

Thank you.

