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Automorphisms of graphs

Definition

An automorphism of a graph G is a bijection from the set of vertices
V (G) to itself that preserves adjacency.

Example

The bijection α defined by

α(v1) = v2, α(v2) = v3, α(v3) = v1, α(v4) = v4,

α(v5) = v7, α(v6) = v8, α(v7) = v5, α(v8) = v6,

is an automorphism of the graph
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The automorphism group

The automorphisms of a graph G form a group Aut(G) with respect to
composition. In our example, this automorphism group is isomorphic to
S2 ⊗ S3, which has twelve elements.
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Automorphism group and enumeration

The automorphism group plays a crucial role in enumeration. The
following classical result relates its size to the number of labellings of a
graph.

Theorem

A graph G with n vertices can be labelled with labels 1, 2, . . . , n in

n!

|Aut(G)|

different ways.
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Big and small automorphism groups

The size of the automorphism group can vary greatly between trees of the
same size: a tree with n vertices can have only one automorphism (the
identity), but also as many as (n− 1)! automorphisms.

Example

Two trees with seven vertices whose automorphism groups have order 1
and 720 respectively:

This poses the natural question for the typical order of the automorphism
group of a tree (given the number of vertices).
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Prior results

McKeon (1991,1996): asymptotic behaviour of the mean number of
automorphisms for certain tree classes.

Bóna and Flajolet (2009): the number of automorphisms is
asymptotically lognormal for random binary trees.

Yu (2012): asymptotic behaviour of mean and variance of
log |Aut(T )| for random labelled trees as |T | → ∞; concentration
property. Lognormal limit law is conjectured.
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The main theorem

Theorem

Let Tn be a labelled tree of order n chosen uniformly at random. There
exist positive constants µ ≈ 0.052290 and σ2 ≈ 0.039498 such that mean
and variance of log |AutTn| are µn = µn+O(1) and σ2n = σ2n+O(1)
respectively, and the renormalised random variable

log |AutTn| − µn
σn

converges weakly to a Gaussian distribution.

Analogous statements hold for unlabelled trees and other families of trees
(e.g. plane trees, d-ary trees) as well.
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Rooted trees: recursive calculation

The structure of the automorphism group of trees is particularly well
understood: it is always obtained from symmetric groups by iterated direct
products and wreath products (Jordan 1869). One can derive a simple
recursive formula for the order of the automorphism group of a rooted tree
in terms of its branches from this fact:

Suppose that the root branches are rooted trees T1, T2, . . . , Tk with
multiplicities r1, r2, . . . , rk. Then we have

|AutT | =
k∏
j=1

rj !|AutTj |rj .

Simply put, an automorphism of T acts as an automorphism within
branches and also possibly permutes branches that are isomorphic.
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Rooted trees: an example

In this example, |Aut(T )| = (2! · 2!2) · 3! = 48.

Automorphisms of Random Trees S. Wagner, Stellenbosch University 9 / 24



Cayley trees and Pólya trees

Definition

Cayley trees are labelled rooted trees, i.e., the vertices receive distinct
labels from 1 to n; the order of branches does not matter.

Pólya trees are unlabelled rooted trees; the order of branches does not
matter.

The figure shows a Pólya tree and a possible labelling that represents a
Cayley tree.

1

43

2
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Generating functions

We consider the two bivariate generating functions associated with Pólya
and Cayley trees respectively:

YP(x, t) =
∑
T∈P

x|T ||AutT |t

and

YC(x, t) =
∑
T∈C

x|T |

|T |!
|AutT |t.

Since every Pólya tree T can be labelled in |T |!/|Aut(T )| ways to yield a
Cayley tree, we have the elementary relation

YC(x, t) = YP(x, t− 1).
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Symbolic decomposition

Every Pólya tree consists of the root and a multiset of branches, each of
which is again a Pólya tree.

Thus we have the symbolic decomposition

P = • ×
⊗
T∈P

(
∅ ] {T} ] {T, T} · · ·

)
,

which translates to

YP(x, t) = x
∏
T∈P

(∑
n≥0

n!txn|T ||AutT |nt
)
,

making use of the recursive formula for the size of the automorphism
group.
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A functional equation

Next we manipulate the equation

YP(x, t) = x
∏
T∈P

(∑
n≥0

n!txn|T ||AutT |nt
)

a little:

YP (x, t) = x exp

( ∑
T∈P

log
∑
n≥0

n!txn|T ||AutT |nt
)

= x exp
( ∑
T∈P

∑
k≥1

(−1)k−1

k

(∑
n≥1

n!txn|T ||AutT |nt
)k)

= x exp

( ∑
T∈P

∑
k≥1

(−1)k−1

k

∑
λ1+λ2+···=k

( k

λ1, λ2, . . .

) ∏
m≥1

(
m!txm|T ||AutT |mt

)λm

)

= x exp

(∑
k≥1

∑
j≥1

(−1)k−1(k − 1)!
∑

λ1+λ2+···=k
λ1+2λ2+···=j

∏
m≥1

(m!λmt

λm!

) ∑
T∈P

xj|T ||AutT |jt
)
.
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A functional equation

We have found that

YP (x, t) = x exp

(∑
k≥1

∑
j≥1

(−1)k−1(k − 1)!
∑

λ1+λ2+···=k
λ1+2λ2+···=j

∏
m≥1

(m!λmt

λm!

) ∑
T∈P

xj|T ||AutT |jt
)
.

Thus for certain coefficients a(j, t), we have

YP(x, t) = x exp
(∑
j≥1

a(j, t)YP(xj , jt)
)

and consequently, by the relationship between Pólya trees and Cayley trees,

YC(x, t) = x exp
(∑
j≥1

a(j, t− 1)YC(x
j , jt− j + 1)

)
.

Automorphisms of Random Trees S. Wagner, Stellenbosch University 14 / 24



A functional equation

We have found that

YP (x, t) = x exp

(∑
k≥1

∑
j≥1

(−1)k−1(k − 1)!
∑

λ1+λ2+···=k
λ1+2λ2+···=j

∏
m≥1

(m!λmt

λm!

) ∑
T∈P

xj|T ||AutT |jt
)
.

Thus for certain coefficients a(j, t), we have

YP(x, t) = x exp
(∑
j≥1

a(j, t)YP(xj , jt)
)

and consequently, by the relationship between Pólya trees and Cayley trees,
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Analysis of the functional equation

YC(x, t) = x exp
(∑
j≥1

a(j, t− 1)YC(x
j , jt− j + 1)

)
.

We have a(1, t) = 1 for all t and |a(j, t)| ≤ 2j−1 for Re(t) ≤ 0. It follows
that

YC(x, t) = x exp
(
YC(x, t) +R(x, t)

)
,

where R(x, t) is an analytic function of x and t if |x| < 1
2 and Re(t) ≤ 1

2 .

Now let W denote Lambert’s W -function, defined implicitly by
x = W (x)eW (x). We can write

YC(x, t) = −W (−x exp(R(x, t))).
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Analysis of the functional equation

YC(x, t) = −W (−x exp(R(x, t))).

It is well known that W (x) can be analytically continued to the entire
complex plane, except for a branch cut at x = −e−1, where we have the
asymptotic expansion

W (x) = −1 +
√

2(1 + ex) +O(|1 + ex|).

Since x exp(R(x, t))
∣∣∣
t=0

= x and ∂
∂xx exp(R(x, t))

∣∣∣
t=0

= 1, by the

implicit function theorem there exists an analytic function ρ(t) in a

suitable neighbourhood of 0 for which x exp(R(x, t))
∣∣∣
x=ρ(t)

= e−1.

It follows that

xR(x, t) =
1

e
− 1

e

(
1+ρ(t)

∂

∂x
R(x, t)

∣∣∣
x=ρ(t)

)
(1−x/ρ(t))+O(|1−x/ρ(t)|2).
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Analysis of the functional equation

xR(x, t) =
1

e
− 1

e

(
1+ρ(t)

∂

∂x
R(x, t)

∣∣∣
x=ρ(t)

)
(1−x/ρ(t))+O(|1−x/ρ(t)|2).

Hence YC(x, t) = −W (−x exp(R(x, t))) has a square root singularity with
asymptotic expansion

YC(x, t) = 1−
(

2
(

1 + ρ(t)
∂

∂x
R(x, t)

∣∣∣
x=ρ(t)

))1/2√
1− x/ρ(t) +O(|1−x/ρ(t)|).

Now we can apply the Flajolet-Odlyzko singularity analysis, which yields

[xn]YC(x, t) ∼
(

1

2π

(
1 + ρ(t)

∂

∂x
R(x, t)

∣∣∣
x=ρ(t)

))1/2

n−3/2ρ(t)−n.

uniformly in t on compact subsets of the half-plane {t ∈ C : Re(t) ≤ 1
2}.
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e

(
1+ρ(t)

∂

∂x
R(x, t)

∣∣∣
x=ρ(t)

)
(1−x/ρ(t))+O(|1−x/ρ(t)|2).
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2
(

1 + ρ(t)
∂
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∣∣∣
x=ρ(t)
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Deducing the limiting distribution

[xn]YC(x, t) =
1

n!

∑
T∈C
|T |=n

|AutT |t ∼
(

1

2π

(
1 + ρ(t)

∂

∂x
R(x, t)

∣∣∣
x=ρ(t)

))1/2

n−3/2ρ(t)−n.

Since there are nn−1 Cayley trees with n vertices, the moment generating
function of log |AutT | for random Cayley trees with n vertices is

1

nn−1

∑
T∈C
|T |=n

et log |AutT | =
1

nn−1

∑
T∈C
|T |=n

|AutT |t,

so the asymptotic formula can be used to show that the moment
generating function of the renormalised random variable tends to et

2/2, the
moment generating function of a normal distribution, as n→∞.

In fact, one can use a general result, known as Hwang’s quasi-power
theorem, to obtain the desired result.
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The trouble with Pólya trees

Our approach fails to apply to Pólya trees, because the generating function

YP(x, t) =
∑
T∈P

x|T ||AutT |t

has radius of convergence 0 as soon as Re(t) > 0.

Thus we need a somewhat different approach, where extremely large
contributions to the automorphism group are neglected.
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Trees with bounded degrees

If every vertex of a rooted tree T has at most ∆ children, then it is easy to
see that

|AutT | ≤ (∆!)|T |.

Hence, if a class T of rooted trees has outdegrees bounded by ∆, then

YT (x, t) =
∑
T∈T

x|T ||AutT |t

does in fact have nonzero radius of convergence for every t, and the
techniques that we used for Cayley trees can still be applied.
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From bounded to unbounded degrees

To deal with unbounded degrees and thus potentially very large
automorphism groups, we apply an additional trick: we consider a
“capped” version of the automorphism group size, where the contribution
of a single collection of identical branches is limited to a fixed bound M .

In the recursion

|AutT | =
k∏
j=1

rj !|AutTj |rj ,

where T1, T2, . . . are the branches of T with multiplicities r1, r2, . . ., we
replace the factor

∏k
j=1 rj ! by

∏k
j=1 min(M, rj !) to obtain the recursive

definition of a quantity AM (T ):

AM (T ) =

k∏
j=1

min(M, rj !)AM (Tj)
rj .

Now we first prove a central limit theorem for AM and let M go to infinity.
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From rooted to unrooted trees

So far we have only considered rooted trees, where the size of the
automorphism group can conveniently be calculated in a recursive fashion.

As it turns out, artificially fixing one vertex (the root) cannot influence the
size of the automorphism group too much:

Lemma

Let Tr be a rooted version of some tree T (rooted at a vertex r). The
sizes of the automorphism groups of T and Tr satisfy the inequalities

|AutTr| ≤ |AutT | ≤ |T ||AutTr|.

The first inequality is trivial, for the second we note that the number of
different rooted labellings of T is |T | · |T |!

|AutT | , while the number of

labellings of T with r as the root is |T |!
|AutTr| .
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From rooted to unrooted trees

The inequalities

|AutTr| ≤ |AutT | ≤ |T ||AutTr|

imply that
log |AutTr| = log |AutT |+O(log |T |),

so the central limit theorem carries over (the error is of lower order than
the standard deviation).
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Conclusion

For many different classes of random trees, the number of
automorphisms asymptotically follows a log-normal limit law.

Similar results can also be proven for trees that are not uniformly
chosen at random, but rather follow a growth process (Ralaivaosaona
+ SW, 2016+)

We expect similar results to hold for classes of graphs that are
“tree-like”, in particular so-called subcritical graph classes (which
include e.g. cacti, outerplanar graphs and series-parallel graphs).
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