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Automorphisms of graphs

Definition
An automorphism of a graph G is a bijection from the set of vertices
V(G) to itself that preserves adjacency.
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Automorphisms of graphs

Definition
An automorphism of a graph G is a bijection from the set of vertices
V(G) to itself that preserves adjacency.

Example
The bijection « defined by

a(vy) = ve, a(ve) =vs, a(vs) =v1, avg) = vy,
a(vs) = vr, a(ve) = vs, a(vr) = vs, a(vg) = vs,

is an automorphism of the graph
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The automorphism group

The automorphisms of a graph G form a group Aut(G) with respect to
composition. In our example, this automorphism group is isomorphic to
S9 ® S3, which has twelve elements.
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Automorphism group and enumeration E’S

The automorphism group plays a crucial role in enumeration. The
following classical result relates its size to the number of labellings of a
graph.
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Automorphism group and enumeration E’S

The automorphism group plays a crucial role in enumeration. The
following classical result relates its size to the number of labellings of a

graph.

Theorem
A graph G with n vertices can be labelled with labels 1,2,...,n in

n!
| Aut(G)]

different ways.
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Big and small automorphism groups E’S

The size of the automorphism group can vary greatly between trees of the
same size: a tree with n vertices can have only one automorphism (the

identity), but also as many as (n — 1)! automorphisms.
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Big and small automorphism groups E’S

The size of the automorphism group can vary greatly between trees of the
same size: a tree with n vertices can have only one automorphism (the
identity), but also as many as (n — 1)! automorphisms.

Example
Two trees with seven vertices whose automorphism groups have order 1
and 720 respectively:

N
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Big and small automorphism groups E’S

The size of the automorphism group can vary greatly between trees of the
same size: a tree with n vertices can have only one automorphism (the
identity), but also as many as (n — 1)! automorphisms.

Example

Two trees with seven vertices whose automorphism groups have order 1
and 720 respectively:

N

This poses the natural question for the typical order of the automorphism
group of a tree (given the number of vertices).
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Prior results

m McKeon (1991,1996): asymptotic behaviour of the mean number of
automorphisms for certain tree classes.
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Prior results

m McKeon (1991,1996): asymptotic behaviour of the mean number of
automorphisms for certain tree classes.

m Bdna and Flajolet (2009): the number of automorphisms is
asymptotically lognormal for random binary trees.
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Prior results E’S

m McKeon (1991,1996): asymptotic behaviour of the mean number of
automorphisms for certain tree classes.

m Bdna and Flajolet (2009): the number of automorphisms is
asymptotically lognormal for random binary trees.

= Yu (2012): asymptotic behaviour of mean and variance of
log | Aut(T")| for random labelled trees as |T'| — oo; concentration
property. Lognormal limit law is conjectured.
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The main theorem

Theorem

Let T}, be a labelled tree of order n chosen uniformly at random. There
exist positive constants y1 ~ 0.052290 and o2 ~ 0.039498 such that mean
and variance of log | Aut T}, | are p, = un + O(1) and 02 = o*n + O(1)
respectively, and the renormalised random variable

log | Aut T, | — i,

On

converges weakly to a Gaussian distribution.
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The main theorem

Theorem

Let T}, be a labelled tree of order n chosen uniformly at random. There
exist positive constants y1 ~ 0.052290 and o2 ~ 0.039498 such that mean
and variance of log | Aut T}, | are p, = un + O(1) and 02 = o*n + O(1)
respectively, and the renormalised random variable

log | Aut T, | — i,

On

converges weakly to a Gaussian distribution.

Analogous statements hold for unlabelled trees and other families of trees
(e.g. plane trees, d-ary trees) as well.
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Rooted trees: recursive calculation E’S

The structure of the automorphism group of trees is particularly well
understood: it is always obtained from symmetric groups by iterated direct
products and wreath products (Jordan 1869). One can derive a simple
recursive formula for the order of the automorphism group of a rooted tree
in terms of its branches from this fact:
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Rooted trees: recursive calculation E’S

The structure of the automorphism group of trees is particularly well
understood: it is always obtained from symmetric groups by iterated direct
products and wreath products (Jordan 1869). One can derive a simple
recursive formula for the order of the automorphism group of a rooted tree
in terms of its branches from this fact:

Suppose that the root branches are rooted trees T3, 75, ..., T} with
multiplicities r1,79,...,7%. Then we have

k
| Aut 7| = [ !l Aut 75|77,
j=1
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Rooted trees: recursive calculation E’S

The structure of the automorphism group of trees is particularly well
understood: it is always obtained from symmetric groups by iterated direct
products and wreath products (Jordan 1869). One can derive a simple
recursive formula for the order of the automorphism group of a rooted tree
in terms of its branches from this fact:

Suppose that the root branches are rooted trees T3, 75, ..., T} with
multiplicities r1,79,...,7%. Then we have

k
| Aut 7| = [ !l Aut 75|77,
j=1

Simply put, an automorphism of T acts as an automorphism within
branches and also possibly permutes branches that are isomorphic.
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Rooted trees: an example

In this example, | Aut(T)| = (2! - 2!?) - 3! = 48.
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Cayley trees and Pdlya trees E’S

Definition
Cayley trees are labelled rooted trees, i.e., the vertices receive distinct
labels from 1 to n; the order of branches does not matter.
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Cayley trees and Polya trees E’S

Definition

Cayley trees are labelled rooted trees, i.e., the vertices receive distinct
labels from 1 to n; the order of branches does not matter.

Pdlya trees are unlabelled rooted trees; the order of branches does not
matter.
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Cayley trees and Polya trees E’S

Definition

Cayley trees are labelled rooted trees, i.e., the vertices receive distinct
labels from 1 to n; the order of branches does not matter.

Pdlya trees are unlabelled rooted trees; the order of branches does not
matter.

The figure shows a Pdlya tree and a possible labelling that represents a
Cayley tree.

D
©) @
@
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Generating functions

We consider the two bivariate generating functions associated with Pdlya
and Cayley trees respectively:

Yp(x,t) = > 2 Aut 7|

TeP

Z T "|AutT|t

TeC

and
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Generating functions

We consider the two bivariate generating functions associated with Pdlya
and Cayley trees respectively:

Yp(x,t) = > 2 Aut 7|

TeP

Z T "|AutT|t

TeC

and

Since every Pdlya tree T can be labelled in |T'|!/| Aut(T")| ways to yield a
Cayley tree, we have the elementary relation

Ye(z,t) =Yp(z,t —1).
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Symbolic decomposition

Every Pélya tree consists of the root and a multiset of branches, each of
which is again a Pdlya tree.
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Symbolic decomposition

Every Pélya tree consists of the root and a multiset of branches, each of
which is again a Pdlya tree.
Thus we have the symbolic decomposition

P =ex ®(®@{T}&J{T7T}"')’

TeP
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Symbolic decomposition

Every Pélya tree consists of the root and a multiset of branches, each of
which is again a Pdlya tree.
Thus we have the symbolic decomposition

P =ex QZ)(@HJ{T}HJ{TZT}'“)’

TeP
which translates to
Yp(z,t) == H <Z nltz™ Tl Aut T|"t>,
TeP “n>0

making use of the recursive formula for the size of the automorphism
group.
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A functional equation

Next we manipulate the equation

Yp(z,t)=x H (Zn!tx”m\ Aut T|"t>

TeP *n>0

a little:
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A functional equation

Next we manipulate the equation
o t) =2 [] (Z nltnlT) AutT|”t>
TEP “n>0
a little:

Yp(z,t) = log Z n!tz™Tl| Aut T|”t)

(TG’P n>0
_ p( Z (—l)kr—l (Zn't "lTl‘AutTlnt> )
TEPk>1 n>1
- p( > >, )\k )11 (m!twm‘T'lAutT‘mt)Am)
TEP k>1 A AFAotoo=k LA m21
— ( Sk -1)! > 11 (m ) > xj|T‘|AutT|jt>.
k>15>1 A+FAateo=k m>1 =

A1+2Ao+-=j
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A functional equation

We have found that

Yp(x, t)—xexp(zz Vel (k —1)! Z H <m' mt ) Z leTl\AutTPt).

E>15>1 A+Ag+--=k m>1 Am! TEP
A1+2Xg+-=j
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A functional equation

We have found that

Yp(x, t)—xexp(zz Vel (k —1)! Z H <m' mt ) Z leTl\AutTPt).

k>15>1 A +Ao+--=k m>1 : TeP
A1+2Xg+-=j

Thus for certain coefficients a(j,t), we have

Yo(e,t) = zexp (D alj )Yp(a!, jt))

Jj=1
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A functional equation

We have found that

Yp(x, t)—xexp(zz Vel (k —1)! Z H <m' mt ) Z leTl\AutTPt).

k>15>1 A +Ao+--=k m>1 : TeP
A1+2Xg+-=j

Thus for certain coefficients a(j,t), we have

Yo(e,t) = zexp (D alj )Yp(a!, jt))

Jj=1

and consequently, by the relationship between Pdlya trees and Cayley trees,

Ye(x,t) = xexp (Za(j,t — 1)Ye(a?, jt — j + 1))
Jj=1
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Analysis of the functional equation E’S

Yo(o,t) = wexp (D alt - )Ve(ad, jt — j+1)).
j=1
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Analysis of the functional equation E’S

Yo(o,t) = wexp (D alt - )Ve(ad, jt — j+1)).
j=1

We have a(1,t) = 1 for all ¢ and |a(j,t)| < 27! for Re(t) < 0. It follows
that
Ye(a,1) = wexp (Ye(w, 1) + R(,1)),

where R(z,t) is an analytic function of z and ¢ if |z| < 3 and Re(t) < 3.
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Analysis of the functional equation E’S

Yo(o,t) = wexp (D alt - )Ve(ad, jt — j+1)).
j=1

We have a(1,t) = 1 for all ¢ and |a(j,t)| < 27! for Re(t) < 0. It follows
that
Ye(a,1) = wexp (Ye(w, 1) + R(,1)),

where R(z,t) is an analytic function of z and ¢ if |z| < 3 and Re(t) < 3.

Now let W denote Lambert’s W-function, defined implicitly by
z =W (z)eW® . We can write

Ye(z,t) = =W (—zexp(R(x,t))).
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Analysis of the functional equation E’S

Ye(z,t) = =W (—zexp(R(x,t))).
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Analysis of the functional equation E’S

Ye(z,t) = =W (—zexp(R(x,t))).

It is well known that W (x) can be analytically continued to the entire
complex plane, except for a branch cut at = —e™!, where we have the
asymptotic expansion

W(z) =—-1++/2(1 +ex)+ O(]1 + ex|).
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Analysis of the functional equation E’S

Ye(z,t) = =W (—zexp(R(x,t))).

It is well known that W (x) can be analytically continued to the entire
complex plane, except for a branch cut at = —e™!, where we have the
asymptotic expansion

W(z) =—-1++/2(1 +ex)+ O(]1 + ex|).

Since xexp(R(x,t)))tiO =z and 8%:5 exp(R(x,t))‘ =1, by the

implicit function theorem there exists an analytic function p(t) ina

suitable neighbourhood of 0 for which xexp(R(x,t))‘ =e L

z=p(t)
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Analysis of the functional equation E’S

Ye(z,t) = =W (—zexp(R(x,t))).

It is well known that W (x) can be analytically continued to the entire
complex plane, except for a branch cut at = —e™!, where we have the
asymptotic expansion

W(z) =—-1++/2(1 +ex)+ O(]1 + ex|).

Since xexp(R(x,t)))tiO =z and 8%:5 exp(R(x,t))‘ =1, by the

implicit function theorem there exists an analytic function p(t) ina

suitable neighbourhood of 0 for which xexp(R(x,t))‘ =e L

z=p(t)
It follows that
1

vR(x, 1) = é—g <1+p(t)%R(x,t)

YA =a/p(t)+O(1-2/p(t)).

z=p(t)
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Analysis of the functional equation E’S

Y= /p(t)+O(1-2/p(®)).
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Analysis of the functional equation E’S

vR(x,1) = %— ! (1+p(t)%R(a:, )

Y= /p(t)+O(1-2/p(®)).

z=p(t)

Hence Y¢(z,t) = —W(—z exp(R(x,t))) has a square root singularity with
asymptotic expansion

1/2
gg_p(t))) VI=2/p)+0(1 - /(1))

Ye(a,t)=1— (2(1+p(t)6(?mR(x,t)
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Analysis of the functional equation E’S

vR(x,1) = %— : (1+p(t)%R(a:, )

Y= /p(t)+O(1-2/p(®)).

z=p(t)

Hence Y¢(z,t) = —W(—z exp(R(x,t))) has a square root singularity with
asymptotic expansion

1/2
gg_p(t))) VI=2/p)+0(1 - /(1))

Ye(a,t)=1— (2(1 —&—p(t)%R(w,t)

Now we can apply the Flajolet-Odlyzko singularity analysis, which yields

))

uniformly in ¢ on compact subsets of the half-plane {t € C : Re(t) < 1}.

1

" Ye () ~ <27r (1 + p(t)a%R(x, )

z=p(t)
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Deducing the limiting distribution E’S

1/2
[2"]Ye(z, t) :% > AT ~ (%(1 +p(t)8%R(x,t) )) n=3/2p(t)" ™.

T TecC
|T|=n

z=p(t)
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Deducing the limiting distribution E’S

[2"]Ye(z, t) }: |Aut Tt ~ (—7(1+7K052R@yﬂ ))lmn*W2mﬂ*".

' TeC
ITI n

z=p(t)

Since there are n"~! Cayley trees with n vertices, the moment generating
function of log| Aut T'| for random Cayley trees with n vertices is

1
tlog|AutT t
g' I —W E ‘Alll1| 5

TeC TeC
|T|=n |T|=n
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Deducing the limiting distribution E’S

))1/2"’3/ 2p(t) ™.

[z™]Ye (z, t) § |Aut Tt ~ (—(1 +p(t)3R(z,t)
! ox
|%|€Cn

z=p(t)

Since there are n"~! Cayley trees with n vertices, the moment generating
function of log| Aut T'| for random Cayley trees with n vertices is

1
tlog|AutT t
g' I —W E ‘Aul1| 5

TeC TeC
|T|=n IT|=n

so the asymptotic formula can be used to show that the moment

. . . A 2
generating function of the renormalised random variable tends to ! /2, the
moment generating function of a normal distribution, as n — oo.
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Deducing the limiting distribution E’S

1/2
M”D@(Lt):—% > |AuﬂﬂtA4(§%<1+yﬁﬂézfﬁx¢) )) n=3/2p(t)" ™.

nl 7= i z=p(t)
|T|=n

Since there are n"~! Cayley trees with n vertices, the moment generating
function of log| Aut T'| for random Cayley trees with n vertices is

1 1
L st~ LS ey

TeC TeC
|T|=n IT|=n

so the asymptotic formula can be used to show that the moment

. . . A 2
generating function of the renormalised random variable tends to ! /2, the
moment generating function of a normal distribution, as n — oo.

In fact, one can use a general result, known as Hwang's quasi-power
theorem, to obtain the desired result.
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The trouble with Pdlya trees E’S

Our approach fails to apply to Pdlya trees, because the generating function

Yp(x,t) = >zl AutT|'
TeP

has radius of convergence 0 as soon as Re(t) > 0.
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The trouble with Pdlya trees E’S

Our approach fails to apply to Pdlya trees, because the generating function

Yp(x,t) = >zl AutT|'
TeP

has radius of convergence 0 as soon as Re(t) > 0.

Thus we need a somewhat different approach, where extremely large
contributions to the automorphism group are neglected.
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Trees with bounded degrees E’S

If every vertex of a rooted tree 1" has at most A children, then it is easy to
see that
| AutT| < (AN,
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Trees with bounded degrees E’S

If every vertex of a rooted tree 1" has at most A children, then it is easy to

see that
| AutT| < (AN,

Hence, if a class T of rooted trees has outdegrees bounded by A, then

Yr(a,t) =Y al™l| Aut 7]’
TeT

does in fact have nonzero radius of convergence for every ¢, and the
techniques that we used for Cayley trees can still be applied.
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From bounded to unbounded degrees E’S

To deal with unbounded degrees and thus potentially very large
automorphism groups, we apply an additional trick: we consider a
“capped” version of the automorphism group size, where the contribution
of a single collection of identical branches is limited to a fixed bound M.
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From bounded to unbounded degrees E’S

To deal with unbounded degrees and thus potentially very large
automorphism groups, we apply an additional trick: we consider a
“capped” version of the automorphism group size, where the contribution
of a single collection of identical branches is limited to a fixed bound M.
In the recursion

k
| Aut 7| = [ !l Aut 75|77,
j=1

where 11,75, ... are the branches of T" with multiplicities 71, 79,..., we
replace the factor H§:1 r;! by H?:l min(M, r;!)
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From bounded to unbounded degrees E’S

To deal with unbounded degrees and thus potentially very large
automorphism groups, we apply an additional trick: we consider a
“capped” version of the automorphism group size, where the contribution
of a single collection of identical branches is limited to a fixed bound M.
In the recursion

k
| Aut 7| = [ !l Aut 75|77,
j=1
where 11,75, ... are the branches of T" with multiplicities 71, 79,..., we
replace the factor H§:1 r;! by H?:l min(M,r;!) to obtain the recursive
definition of a quantity Ay (7T):

k
Ay (T) = [ [ min(M, r;!) Aps (T5)".
Jj=1
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From bounded to unbounded degrees E’S

To deal with unbounded degrees and thus potentially very large
automorphism groups, we apply an additional trick: we consider a
“capped” version of the automorphism group size, where the contribution
of a single collection of identical branches is limited to a fixed bound M.
In the recursion

k
| Aut 7| = [ !l Aut 75|77,
j=1
where 11,75, ... are the branches of T" with multiplicities 71, 79,..., we
replace the factor H§:1 r;! by H?:l min(M,r;!) to obtain the recursive
definition of a quantity Ay (7T):

k
Ay (T) = [ [ min(M, r;!) Aps (T5)".
Jj=1

Now we first prove a central limit theorem for Ay, and let M go to infinity.
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From rooted to unrooted trees E’S

So far we have only considered rooted trees, where the size of the
automorphism group can conveniently be calculated in a recursive fashion.
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From rooted to unrooted trees E’S

So far we have only considered rooted trees, where the size of the
automorphism group can conveniently be calculated in a recursive fashion.

As it turns out, artificially fixing one vertex (the root) cannot influence the
size of the automorphism group too much:

Lemma

Let 7 be a rooted version of some tree T' (rooted at a vertex r). The
sizes of the automorphism groups of 1" and T.. satisfy the inequalities

|AwtT,| < |AutT| < |T|| Aut T}|.
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From rooted to unrooted trees E’S

So far we have only considered rooted trees, where the size of the
automorphism group can conveniently be calculated in a recursive fashion.

As it turns out, artificially fixing one vertex (the root) cannot influence the
size of the automorphism group too much:

Lemma

Let 7 be a rooted version of some tree T' (rooted at a vertex r). The
sizes of the automorphism groups of 1" and T.. satisfy the inequalities

|AwtT,| < |AutT| < |T|| Aut T}|.

The first inequality is trivial, for the second we note that the number of

different rooted labellings of T is |T'| - |Aﬂ!T‘, while the number of
labellings of T" with r as the root is %.
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From rooted to unrooted trees E’S

The inequalities

|AwtT,| < |AwtT| < |T|| Aut T
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From rooted to unrooted trees E’S

The inequalities
[Aut 7| < |AutT| < |T|| Aut T} |

imply that
log | Aut T,.| = log | Aut T'| + O(log |T),

so the central limit theorem carries over (the error is of lower order than
the standard deviation).
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Conclusion

m For many different classes of random trees, the number of
automorphisms asymptotically follows a log-normal limit law.
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Conclusion

m For many different classes of random trees, the number of
automorphisms asymptotically follows a log-normal limit law.

m Similar results can also be proven for trees that are not uniformly
chosen at random, but rather follow a growth process (Ralaivaosaona
+ SW, 2016+)
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Conclusion

m For many different classes of random trees, the number of
automorphisms asymptotically follows a log-normal limit law.

m Similar results can also be proven for trees that are not uniformly
chosen at random, but rather follow a growth process (Ralaivaosaona
+ SW, 2016+)

m We expect similar results to hold for classes of graphs that are
“tree-like”, in particular so-called subcritical graph classes (which
include e.g. cacti, outerplanar graphs and series-parallel graphs).
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