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1 Overview of the Field
In analytic combinatorics, the objects of study often come from enumerative or algebraic combinatorics.
Applied problems of interest are drawn from classic combinatorics (lattice paths, permutations, integer parti-
tions, combinatorics on words), graph theory, information theory (data compression), number theory, proba-
bility (random walks, branching processes such as trees), theoretical computer science (space and time com-
plexity, sorting, searching, hashing), and applied areas, including biological sciences, information sciences,
mathematical and statistical physics, and so on. The methods include analytic (complex-valued) approaches,
such as analyzing the singularities of the relevant generating functions; symbolic computation (e.g., in Maple,
Mathematica, or Sage); multivariate methods; mathematical transforms (Fourier, Laplace, Mellin); etc. One
of the main goals of analytic combinatorics is the precise characterization of exact or asymptotic information
about the enumeration of combinatorial objects, or about the mean, variance, distribution, etc., of randomly
distributed objects. Since modern-day computing platforms allow researchers throughout the sciences to rou-
tinely study very large objects, the study of asymptotic properties of objects is more relevant today than ever
before.

In probabilistic combinatorics, the objects of study often come from extremal combinatorics or graph
theory, or computational complexity theory. The methods used can come from classic or modern probability
theory, including the classic “Probabilistic Method” introduced by Paul Erdös in the 1930s. Existence proofs
are a common feature in the work of this group, and so are constructive proofs and efficient algorithms.

Topological dynamical systems and ergodic theory were also relevant to the workshop. Important areas in
combinatorics like arithmetic combinatorics and combinatorial number theory have benefited and grown from
techniques borrowed from ergodic theory, e.g., the celebrated Furstenberg’s proof of Szemerédi’s theorem. In
these contexts, combinatorial structures are often associated to shift spaces, the objects of study in symbolic
dynamics. The structure of shift spaces is combinatorially rich in itself for they can be defined by forbidding
sets of finite configurations (or words) in configurations on lattices. Analytic methods are often applied when
studying shift spaces, e.g., dynamic zeta functions, and probabilistic methods come into play when invariant
probability measures are associated to shifts spaces, in which case we are in the context of ergodic theory.

2 Open Problems and Recent Developments
Several open problems were presented and discussed, during both the open problem session and the open
discussions throughout the workshop. We describe some of these.

2.1 Open Problem Session
2.1.1 D. Bevan. Irrational asymptotic counting.

The procedure for the asymptotic enumeration of a combinatorial class A is well-known: First, construct the
formal power series, A(z) =

∑
α∈A z

|α|. Then, by considering A(z) to be the Taylor series of a function
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of a complex variable, extract the asymptotics of the coefficients, |An| =
[
zn
]
A(z), from the location and

nature of the dominant (least positive real) singularity of A(z), by using results such as those of Flajolet &
Odlyzko [9] and Flajolet & Sedgewick [10].

Suppose now that we have an irrational combinatorial class J , the sizes of whose objects are not
necessarily integers. Under modest restrictions, we can still construct an irrational power series, J(z) =∑
η∈J z

|η|, as before, where now |η| ∈ R>0. For example, the series for Motzkin paths, in which the up- and
down-steps have length

√
2, rather than 1, is

1 + z + z2 + z2
√
2 + z3 + 3z1+2

√
2 + z4 + 6z2+2

√
2 + z5 + z4

√
2 + . . .

Every such irrational power series has a radius of convergence in [0,∞] and is analytic within its disk of
convergence, except for a branch cut, which is usually taken to be the negative real axis.

For an irrational power series, J(z), attempting to extract the asymptotics of |Jτ | =
[
zτ
]
J(z) makes

little sense, due to the presence of wild fluctuations. However, the partial sums, |J6t| =
[
z6t
]
J(z), can be

expected to have amenable asymptotic behaviour.
If a class consists of objects whose sizes are all rational with a common denominator d, then a change of

variable z 7→ zd in the corresponding Puiseux series yields a normal power series. It follows that asymptotics
can be extracted from the location and nature of the dominant singularity of the Puiseux series, analogously to
the integer-sized scenario. Furthermore, by approximating irrational power series with Puiseux series, it can
be shown that the (first-order, exponential) growth rate of an irrational combinatorial class is the reciprocal
of the dominant singularity of its irrational power series.

Therefore, it is natural to conjecture that full asymptotics of the partial sums of the coefficients of an irra-
tional power series can always be extracted directly from the location and nature of its dominant singularity,
in a manner exactly analogous to the situation with Taylor series.

2.1.2 M. Bóna. Parking functions.

Let us assume there are n parking spaces denoted 1, 2, . . . , n, in that order, on a one way street. Cars
C1, C2, . . . , Cn sequentially enter the street and try to park. Each car Ci has its preferred parking space
f(i). A car will drive to its preferred parking space and try to park there. If the space is occupied, the car
will park in the next available space. If the car must leave the street without parking, then the process fails.
If (f(1), f(2), . . . , f(n)) is a sequence of preferences that allows every car to park, then we call f a parking
function.

It is well-known that f : [n] → [n] is a parking function if and only if for all i ∈ [n], there are at most
i− 1 distinct elements j ∈ [n] for which i < f(j).

Let f be a parking function on [n], and let us say that
∑n
i=1 f(i) is the sum of f .

Now fix n, and let an,k be the number of parking functions on [n] that have sum k. Miklós Bóna conjec-
tures that the sequence an,n, an,n+1, ...., an,n(n+1)/2 is log-concave.

This conjecture was verified to be true by Richard Stanley on a computer for up to n = 50. The real zeros
property does not hold. The presenter showed one reason for which he believes that the conjecture holds.

2.1.3 D. Galvin. Centipedes.

For a graph G use it(G) to denote the number of independent sets (sets of pairwise non-adjacent vertices)
of size t in G. Alavi, Malde, Schwenk and Erdős [1] studied the independent set sequence (it(G))t≥0, and
showed that it can in general exhibit arbitrary patterns of rises and falls. This is in sharp contrast to the
behavior of the sequence (mt(G))t≥0, whose tth term is the number of matchings (1-regular subgraphs) of
size t in G. By a famous theorem of Heilmann and Lieb [16], the sequence (mt(G))t≥0 is always unimodal.

There are families of graphs for which the independent set sequence is always unimodal; for example,
Hamidoune [15] showed this for claw-free graphs (graphs without an induced star on four vertices). Alavi
et al. [1] posed the following intriguing question:

Question 1 Is the independent set sequence of every tree unimodal?



3

Paths, being claw-free, have unimodal independent set sequences, and it is easy to verify that the same is true
for stars; the intuition that what is true for stars and paths is usually true for all trees is probably what lead
Alavi et al. to raise their question.

Despite substantial effort, not much progress has been made on this question, with just a few sporadic
families of trees being dealt with; see [17, 18, 28, 29] for some results. A partial result for all trees was
obtained by Levit and Mandrescu [19]: if G is a tree (and, more generally, if G is bipartite), then the final one
third of its independent set sequence is decreasing.

Trees that have not yet been dealt with include:

• caterpillars (paths with pendant stars; these interpolate between paths and stars);

• binary trees; and

• the uniform random tree (for which we simply seek an asymptotic almost sure result).

2.1.4 K. Petersen. Multidimensional Eulerian numbers.

Consider a walk on the graph with two loops, L andR, based at the same vertex. In simple opposite reinforce-
ment, when L is chosen another loop is added toR, and whenR is chosen another loop is added to L. The set
of all possible walks is described by the set of all possible infinite paths in an infinite, directed graph (Bratteli
duagram) with vertices (i, j), i, j ≥ 0, with j + 1 edges from (i, j) to (i + 1, j) and i + 1 edges from (i, j)
to (i, j + 1). The number i + j is called the level of (i, j). The number of paths from the root v0 = (0, 0)
to a vertex (i, j) is the Eulerian number A(i + j, j). These numbers satisfy the recurrence A(0, 0) = 1,
A(n, k) = 0 for k /∈ {0, 1, . . . , n}, and A(n, k) = (n − k + 1)A(n − 1, k − 1) + (k + 1)A(n − 1, k) for
n = 1, 2, . . . , k = 0, 1, . . . , n. On the set X of infinite paths in this graph which start at the root there is an
interesting map T , called the adic transformation or Vershik map. For details see [8, 14, 11, 12, 25, 24].

For vertices P,Q in the diagram, denote by dim(P,Q) the number of paths from P to Q. Cylinder sets
determined by initial paths terminating at a common vertex are mapped to one another by powers of T and
so they must be assigned equal measure by any invariant measure. For a path x ∈ X , denote by xn the
vertex of x at level n. If µ is a T -invariant ergodic Borel probability measure on X and C is any cylinder set
terminating at a vertex P , then

µ(C) = lim
n→∞

dim(P, xn)

dim(v0, xn)
for µ-almost every x ∈ X. (1)

This makes it important to study asymptotics of generalized Eulerian numbers: Ap,q(i, j) is the number of
paths in the graph from (p, q) to (p+ i, q + j). (The Eulerian number is A(i+ j, j) = A0,0(i, j).)

In papers cited below, it was proved that the natural symmetric measure onX is ergodic for T , and indeed
it is the unique fully supported ergodic invariant measure. Key ingredients of the proof in [?] included an
explicit formula for the generalized Eulerian numbers,

Ap,q(i, j) =

i∑

t=0

(−1)i−t
(
p+ q + t+ 1

t

)(
p+ q + i+ j + 2

i− t

)
(p+ 1 + t)i+j , (2)

and a monotonicity property of ratios,

Ap,q(i, j + 1)

Ap,q−1(i, j + 1)
≤ Ap,q(i, j)

Ap,q−1(i, j)
≤ q + j

q + 1 + j

Ap,q(i+ 1, j)

Ap,q−1(i+ 1, j)
. (3)

It is possible that a similar approach could be used on multidimensional Eulerian numbers.
Problem. Consider the Bratteli diagram and adic transformation determined by opposite reinforcement on
a graph consisting of m loops based at the same vertex: when a loop is chosen, each of the other loops is
reinforced by 1. The multidimensional generalized Eulerian numbers are defined to be the path counts in
the downward directed infinite graph. The recurrence relation is written easily. (i) Find an exact formula for
these numbers, analogous to (2). (ii) Prove monotonicity of ratios, analogous to (3). (iii) Prove that there is a
unique fully supported ergodic measure. (iv) Determine the dynamical properties of the adic transformation
with respect to this measure. (v) Are there combinatorial consequences, for example to the counting of
permutations or other arrangements?
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2.1.5 S. Wagner. The maximum agreement subtree problem.

The maximum agreement subtree problem arises in the theory of phylogenetics. Consider two leaf-labeled
(rooted or unrooted) binary trees T1 and T2 with n leaves (i.e., the leaves are labeled 1, 2, . . . , n). A subset
of leaves induces a binary tree in a natural way, by taking the smallest subtree that contains all those leaves
and suppressing all vertices of degree 2 (except the root, if rooted trees are considered) afterwards.

If a certain subset S of {1, 2, . . . , n} induces the same tree in both T1 and T2 (i.e., there is a label-
preserving isomorphism), then this tree is called an agreement subtree of T1 and T2. An agreement subtree of
maximum size is called a maximum agreement subtree, and the size of such a tree is denoted MAST(T1, T2).

The study of the distribution of MAST(T1, T2) if T1 and T2 are randomly generated trees was initiated by
Bryant, McKenzie, and Steel [6]. Two different models of randomness were considered: the uniform model
(T1 and T2 are chosen uniformly at random from all binary trees with n leaves), and the Yule-Harding model
(see, e.g., [26, Section 2.5]), which is essentially equivalent to random binary increasing trees and random
binary search trees. Simulations suggest that the expected value of MAST(T1, T2) is of order Θ(na) for an
exponent a ≈ 1/2 in both models.

It was shown that the expected value is O(
√
n ) under both models [4]. On the other hand, [4] also

provides lower bounds of Ω(n1/8) (uniform model) and Ω(n0.384) (Yule-Harding). This raises the natural
question for the “correct” exponent in both cases.

We remark that this question is connected to a famous problem of a similar nature: Take two random
permutations σ and π of {1, 2, . . . , n}, and consider the largest subset of {1, 2, . . . , n} that induces the same
permutation in both σ and π. This is equivalent to determining the largest subset that induces the same permu-
tation in σ−1π and the identity permutation. This, in turn, is nothing but the longest increasing subsequence
in σ−1π, and if σ and π are both uniformly random permutations, then so is σ−1π.

The celebrated work of Baik, Deift and Johansson [2] showed that the limiting distribution of the longest
increasing subsequence of a uniformly random permutation is the Tracy-Widom distribution. It was known
much earlier (and it is much easier to prove) that its typical order of magnitude is Θ(

√
n ). This gives some

hope that the correct order of magnitude for the maximum agreement subtree can be determined as well—it
might even be as high as Θ(

√
n ).

2.1.6 M. D. Ward. Toral automorphisms.

Toral automorphisms T : Td → Td are defined by square integral matrices A ∈ GLd(Z) satisfying det(A) =
±1. They are classified according to the spectra of the matrices defining them, so if the spectra ofA is written
like

|λ1| ≥ · · · ≥ |λs| > 1 = |λs+1| = · · · = |λs+2t| > |λs+2t+1| ≥ · · · ≥ |λd|,

then T = TA is ergodic if no eigenvalue of A of norm 1 is a root of unity, hyperbolic if the eigenvalues of A
lay outside the unit circle (i.e., t = 0), and quasihyperbolic if it is ergodic and t > 0. The topological entropy
of T is h =

∑s
j=1 log |λj |. Consider periodic orbits of cardinality k, τ = {x, T (x), . . . , T k(x) = x}.

In [21], it is shown that for quasihyperbolic toral automorphisms the following analogue of Mertens’ theorem
holds:

MT (N) :=
∑

|τ |≤N

1

eh|τ |
∼ m logN + C1 +O(N−1),

for some m = m(A) ∈ N given by m =

∫

X

t∏

i=1

(2 − 2 cos(2πxi)dx1 . . . dxt, where X ⊂ Td is the closure

of {(nθ1, . . . , nθt) : n ∈ Z}, and where e±2πiθ1 , . . . , e±2πiθt are the eigenvalues with unit modulus. Let

A =




0 0 0 −1
1 0 0 8
0 1 0 −6
0 0 1 8


 and A(n) := A⊕A2 ⊕ · · · ⊕An︸ ︷︷ ︸

n times

∀n ≥ 1.
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In such a setup, A(n) defines a quasihyperbolic toral automorphism for each n ≥ 1, so there is a sequence
of integer numbers m(n) = m(A(n)), which is A133871 in [27]. In [13], the precise asymptotic growth of
this sequence was obtained together, and several combinatorial properties were discussed.
Problem. Extend the work in [13] to more general classes of quasihyperbolic toral automorphisms.

2.2 Open Discussions
2.2.1 R. Gómez. Markov shifts and loop systems.

Let G be a (countable) digraph1 with a vertex set V = V (G) and edge set E = E(G) ⊂ V 2; its adjacency
matrix A = A(G) is therefore a {0, 1}-matrix indexed by V . The Markov shift associated to G (or A) is the
dynamical system X = (X,σ), where X = XG = XA is the space of bi-infinite paths on G,

X := {x = (xn)n∈Z ∈ V Z : (xn, xn+1) ∈ E ∀n ∈ Z},

and σ : X → X is the shift map defined by the rule σ(x)n = xn+1 for every x = (xn)n∈Z ∈ X and n ∈ Z.
The directed closed paths (or cycles) of G correspond to the periodic points of X (i.e., the finite orbits). Let

pn := #{x ∈ X : σn(x) = x} and qn = #{x ∈ X : σn(x) = x and σk(x) 6= x ∀k = 1, . . . , n− 1}

for every n ≥ 1. The counting sequence {pn}∞n=1 of the periodic points is encoded in an exp-log generating
function, the so called dynamical or Artin-Mazur zeta function ζ = ζX = ζA,

ζ(z) := exp

( ∞∑

n=1

pn
n
zn

)
=

∞∏

n=1

1

(1− zn)
qn/n

=
1

det(I − zA)
.

For a fixed vertex v ∈ V , consider the classQ(v) of the first return loops to v, i.e., all the (non-empty) closed
paths that start and end at v and do not visit v otherwise (other vertices can occur several times). If Q(v) is
a combinatorial class (i.e., if it has a finite number of elements of any given size), then X has well defined
local zeta functions (a property that does not depend on the vertex v). In this case, the ordinary generating
function of Q(v) satisfies

Q(v)(z) :=

∞∑

n=1

q(v)n zn = 1− ζA(v)(z)

ζA(z)
= 1− det(I − zA)

det(I − zA(v))
,

where A(v) results from A by removing the row and column corresponding to v. Let P(v) = SEQ
(
Q(v)

)
be

the combinatorial class of cycles in v (not necessarily first return). The sequence schema yields the ordinary
generating function of P(v),

P (v)(z) :=

∞∑

n=0

p(v)n zn =
1

1−Q(v)(z)
.

The (topological) entropy of X is h(X) = log λ, where λ := limn→∞
(
p
(v)
n

)1/n
(again, it does not depend

on the chosen vertex v). Having equal entropy is an equivalence relation h between Markov shifts, which
henceforth are assumed to have finite entropy. Recall the probabilistic regime classification for X:

Transient (T) Null Recurrent (NR) Positive Recurrent (PR) Strong Positive Recurrent (SPR)

Q(v)(1/λ) < 1 Q(v)(1/λ) = 1and Q(v)(1/λ) = 1and lim
n→∞

(
q
(v)
n

)1/n
< λ

∑∞
n=1 nq

(v)
n /λn =∞

∑∞
n=1 nq

(v)
n /λn <∞

Two Markov shifts defined by two digraphs G and H are shift dominant equivalent (SDE) if for some (equiv.
every) pair of vertices v ∈ V (G) and w ∈ V (H), there exists an integer K = K(v, w) ≥ 0 such that for
every n ≥ 1,

p(v)n ≤ p
(w)
n+K and p(w)

n ≤ p(v)n+K .
1Henceforth all digraphs are assumed to be strongly connected and aperiodic, i.e., the greatest common divisor of the lengths of their

cycles is 1.
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v

q(v)
n = number of first return cycles

to v of length n

Q(v)(z) =

1X

n=1

q(v)
n zn

Figure 1: Loop system generated by a power series.

Almost isomorphism (AI) is an equivalence relation introduced in [5], and AI⇒ SDE⇒ h (i.e., two Markov
shifts which are AI are necessarily SDE, and being SDE implies that they have equal entropy). For every pair
of metasymbols X,Y ∈ {h, SDE, AI} such that X⇒ Y, write X� Y if there exists uncountably many non
X-equivalent elements in each Y-equivalence class. We know the following:

SPR PR NR T
AI⇔ SDE⇔ h AI� SDE⇔ h AI⇒ SDE� h AI⇒ SDE� h

There is evidence that the symbols ⇒ in the NR and T regimes could be replaced by �. Loop systems
are Markov shifts defined by generating functions, like Q(v) for example, the corresponding digraph would
consist of q(v)n cycles of length n based on a distinguished vertex v and otherwise vertex disjoint (illustrated in
Figure 1). Hence we seek to exhibit an uncountable family of generating functions that induce loop systems
which are SDE but not AI. The exponential growth of their coefficients must be the same for it corresponds to
the entropy. It is the subexponential growth that must be controlled. We encountered the following asymptotic
problem:
Problem. Let ζ(s, z) :=

∑∞
n=1 z

n/ns for every s > 1 and |z| ≤ 1. For each a ∈ (1, 2), let F (z) :=
ζ(a, z)/ζ(a) and S(z) :=

∑∞
n=0 Snz

n := 1/(1 − F (z)). Determine the precise asymptotics of the coeffi-
cients {Sn}n≥0.

3 Presentation Highlights
The speakers addressed the main areas relevant to the workshop and were chosen with wide diversity. The
week began in a notable way, with a motivating main talk by Helmut Prodinger. He surveyed 40 years
of work on tree enumeration, from the early days of asymptotic analysis to recent developments, showing
with great expertise the most important contributions, including some of his own discoveries, and many joint
works with his collaborators, some of whom were participants of the workshop. Other topics related to this
area include automorphism groups and profiles of random trees, Pólya trees, fringe subtrees, Galton-Watson
trees and applications to cancer data.

Special integer sequences like Stirling, Euler, Lucas, Schröder and Lah numbers were the subject of
several of the talks, many of which presented studies on parameters like the number of factors, efficient
computations and generalizations. Asymptotic behavior was common to many of the investigations, no matter
the technical context. Asymptotic themes were a common thread, woven through analytic, dynamic, and
probabilistic analysis:

• Analytic. Singularity analysis [9, 10], saddle point approach, integral transformations, Mellin-Perron
summation formulas, dynamic zeta functions, analytic combinatorics in several variables, etc.

• Probabilistic. Method of moments, Pólya urn models, coupling with branching Markov chains, Lévy
processes, martingales, Kernel method, etc.

James Fill delivered a main talk on the analysis of the Quicksort algorithm. He discussed recent results on
the existence of a local limit theorem for key comparisons, a joint work with B. Bollobás and O. Riordan. He
also presented a survey that highlighted the importance of the algorithm, showing the work of many people
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as well as his own contributions with several collaborators. He also discussed several open problems, e.g., on
unimodal densities and infinitely divisible distributions.

Other topics considered in the talks included asymptotic behavior of coefficients of polynomials with
only unit roots, permutations (with striking presentations on enumerative and analytic aspects of sorting
with C-machines as well as on staircases), graphs with marked subgraphs, Young tableaux, and the game of
memory. Dynamical systems were considered too, from finite dynamics coming from iteration of mappings
to multidimensional random shifts of finite type.

Analytic combinatorics in several variables remarkably arose jointly with probability theory in the main
talk of Marni Mishna, who considered weighted lattice paths, and in particular, the Gouyou-Beauchamps
model. Her talk exhibited the power of multivariate asymptotics in the style of Pemantle & Wilson [22, 23].
She showed how the weights intervene and clearly described the multivariate asymptotic behavior along the
various parameters’ ranges. She posted questions, mentioned recent advances, and discussed several enticing
open problems on this interesting subject.

Michael Drmota gave the last main talk, on subgraph counting in series parallel graphs. His presentation
demonstrated the strength of analytic combinatorics by exhibiting technical expertise applied to a fascinating
problem. Based on block decomposition, it was shown how generating functions can be obtained for series
parallel graphs. Then he explained results on Gaussian limiting distributions of additive parameters of sub-
critical graph classes. He utilized techniques developed by other participants like the Quasi-Power Theorem
(by H. K. Hwang). One main ingredient was a lemma obtained by Drmota, in joint work with B. Gitten-
berger and J. F. Morgenbesser, regarding a local analytic approximation to a system of an infinite number of
equations.

4 New Projects and Scientific Progress
The wide variety of specialties present at the workshop led to numerous new collaborations, even new per-
spectives to tackle old open problems. For instance:

• J. Pantone mentions that he started to work with C. Banderier on examples of combinatorial objects that
have functional equations that exhibit the same kind of properties as the open questions from Pantone’s
talk (namely, that they are not differentially algebraic and their functional equations have cross variable
substitution). M. Mishna talked about how the open questions from Pantone’s work relate to several of
Mishna’s results on lattice walks in the plane. She indicated several possible avenues of attack to make
progress on the problem.

• A. Morales presented his recent work with G. Panova and I. Pak about the enumeration of skew Young
tableaux. In particular, they found an asymptotic form for the enumeration of a particular family of
skew Young tableaux up to some unknown constant C. J. Pantone mentioned an algorithmic method to
predict such constants, so Morales asked him if his technique would work on the sequence of Morales,
Panova, and Pak. Using the 50 terms of the sequence that Morales provided, Pantone was able to
provide a rough estimate of C. Since then, Pantone has generated the next 150 terms, and is working
to obtain more accurate estimates.

• C. Mailler and G. Uribe Bravo had been working on projects related to random graphs. During the
workshop, and (in particular) during the talk of M. Drmota, they came across a very interesting class
of random graphs that they had not encountered previously. During the informal discussions that took
place on Friday, they explored the possibilities of this class and decided to pursue a joint project on the
profiles of series parallel graphs.

• M. D. Ward proposed an approach to the problem in section §2.2.1, namely to apply saddle point
method, followed by Mellin transforms and beta integrals. It is promising because there is a saddle
point, and the Mellin transform L∗(s) applied to L(t) := ln(S(et)) behaves nicely, so that there is an
explicit expression for L∗(s). We expect that beta integrals will help to estimate L∗(s) and be able to
revert the process to get the desired result: Sn = Θ(1/ log n).



8

• To address the problem in section §2.1.6, R. Gómez looked at “divisor matrices” (introduced by Red-
heffer in 1977): If A(n) is the {0, 1}-matrix defined entrywise for every i, j ∈ {1, . . . , n} by the rule
A(n)(i, j) = 1 if and only if j = 1 or i|j, then det(A(n)) = M(n), the Merten’s function. It is known
that #M−1(±1) = ∞, so infinitely many A(n) define toral automorphisms. We learned that none of
these can be quasihyperbolic, even in a more general setting in which all the formal manipulation of
Dirichlet series can be reproduced [7]. Now we are considering other possible generalizations and also
looking at integral orthogonal matrices.

• M. Boyle’s testimonial expresses optimism about finding tools in the work of Pemantle & Wilson [22,
23] to finish a proof of an old open problem. To roughly describe it, assume the context of section
§2.2.1 (restricted to finite digraphs). A Markov chain is an assignment P of transition probabilities on
the outgoing edges of each of the vertices of a digraph G,2 thus P induces a Markov measure on XG,
i.e., a σ-invariant Borel probability measure with the Markov property. Equal topological entropy is
not enough to guarantee the existence of a measure preserving AI between two Markov chains: new
invariants arise in this general measure theoretical context; they are known as the greeks3, (∆, β).
Measure preserving AIs belong to the class of the so called finitary isomorphisms with finite expected
coding time (FECT). Boyle referred to an old, open problem, to classify the latter (it goes back to the
work of W. Parry from 1979); it is expected that the greeks form a complete set of invariants for finitary
isomorphisms with FECT. What remains to be shown is the existence of such an isomorphism between
two Markov chains with the same greeks. The AI construction in [5] corresponds to the case when ∆ is
trivial (single variable). For general Markov chains, ∆ is finitely generated (several variables). We are
hoping that the analytic single variable arguments used in [5] to estimate growth rates of finite orbits
can be adapted to this multivariable setting to control the asymptotic growth of weighted finite orbits,
with the ultimate goal of constructing an AI that preserves the Markov measures of two Markov chains
with the same greeks.

• Testimonials from other participants, like those from E. de Panafieu and I. Mező, also point towards
learning new problems and techniques as well as initiating new collaborations. For instance, I. Mező
was invited by H. K. Hwang for a weeklong visit at Academica Sinica, to work with him, and with
Sara Kropf. Another potential collaboration was initiated by H. Prodinger, who showed to M. D. Ward
some computations about protected nodes, a rapidly developing area that is also a topic of research by
M. Bóna. Finally, R. Gómez and K. Petersen also disscused various problems during the workshop, a
possible collaboration between them could rise.

5 Summary of the Meeting
The workshop brought together two main groups of researchers working in analytic and probabilistic combi-
natorics. It also included researches working in ergodic theory, specifically symbolic dynamical systems. The
variety of subjects was enriching and motivating, which gave rise to several new collaborations and projects.
In addition to creating synergy to promote teamwork and to facilitate learning different tools, general diversity
was achieved:

2Hence P is encoded as a stochastic matrix compatible withA = A(G) (i.e.,Au,v 6= 0 if and only if Pu,v 6= 0 for every u, v ∈ V ).
3The greeks associated to a Markov chain P is the 4-tuple (Γ,∆, c∆, β) defined as follows. First, given a group G, let 〈K〉G denote

the subgroup generated by a subset K ⊂ G.

• The gamma group is Γ :=
〈
{wt(γ) := Px0,x1 . . . Pxn−1,xn : γ = x0, . . . , xn is a closed directed path in G}

〉
(R+,×)

.

• The delta group is ∆ :=
{
wt(γ)
wt(γ′) : γ and γ′ are cycles in G of equal length

}
≤ Γ.

• c∆ is the distinguished generator of the cyclic group Γ/∆, where

c := wt(γ)/wt(γ′) with γ and γ′ cycles satisfying length(γ) = length(γ′) + 1 (well defined modulo ∆).

• The beta function is β(t) := Spectral radius
(
P t
)

(the entries of the P t are the exponential functions P tu,v for every u, v ∈ V ,
with 00 = 0, for example P 0 = A by compatibility, in particular log β(0) is the topological entropy).

Technical arguments (see [20]) can reduce the greeks to the pair (∆, β) by setting Γ = ∆.
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• Participants came from the US, Canada, México, Scotland, South Africa, China, Taiwan, Austria and
France.

• Six participants were women, and four of them gave talks, one of which was a main talk (and the other
two female participants were students).

• The participants ranged from consolidated and internationally recognized experts to young researchers
and some students.

Figure 2: Participants of the Workshop in Analytic and Probabilistic Combinatorics, Banff 2016.
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