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Birational approach to HMS

Let X be a Fano DM stack and W : Xmir → C its mirror potential.

HMS Conjecture
2 : There is an equivalence

D(X ) ∼= FS(W ).

Question 1 : What are natural decompositions for either side of
this equivalence?

Question 2 : Does HMS respect these decompositions?
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Birational Approach

Question 1 : What are natural decompositions for either side of
this equivalence?

B-model answer : If X admits a minimal model or VGIT sequence

X
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99K X1
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99K · · · fr

99K Xr

then
D(X ) =

〈
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B
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〉
.

If Xr = ∅, then this fully decomposes D(X ) in terms
of wall contribution categories.
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Birational Approach

Question 1 : What are natural decompositions for either side of
this equivalence?

A-model answer : Take the following steps

Step 1 : Replace W : Xmir → C with w where

Xmir U

C M

W π

w

and π : U →M is a moduli stack of hypersurfaces of
Xmir .



Birational Approach

Question 1 : What are natural decompositions for either side of
this equivalence?

A-model answer : Take the following steps

Step 2 : Compactify the range C of the superpotential W
where

X̄mir Ū

P1 M̄

W π

w

and π : Ū → M̄ is a compactified moduli stack of
stable hypersurface degenerations of X̄mir .



Birational Approach

Question 1 : What are natural decompositions for either side of
this equivalence?

A-model answer : Take the following steps

Step 3 : Consider a 1-parameter degeneration wt of w = w1

X̃mir
w− Ū

P1 × D∗ M̄

W π

wt

where D is the unit disc and D∗ = D\{0}.



Birational Approach

Question 1 : What are natural decompositions for either side of
this equivalence?

A-model answer : Take the following steps

Step 4 : Consider the degenerate potential w0 of wt which
is a map

w0 = ∪wi
0 : ∪r1P1 → M̄.



Birational Approach

Question 1 : What are natural decompositions for either side of
this equivalence?

A-model answer : Take the following steps

Step 5 : Taking Wi to be the pullback of U along wi
0 and

T A
wi = FS(Wi ), there is a semi-orthogonal

decomposition

FS(W ) =
〈
T A
w1 , . . . , T A

wr

〉
.
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Birational Approach

Question 2 : Does HMS respect these decompositions?

Toric Setting : Diemer, Katzarkov, K. (DKK) give an explicit
prescription for taking a VGIT sequence

X
f1
99K X1

f2
99K · · · fr

99K ∅

to a degeneration wt of mirror potentials.



Birational Approach

Question 2 : Does HMS respect these decompositions?

Toric Setting The resulting decompositions

D(X ) =
〈
T B
f1 , . . . , T

B
fr

〉
,

FS(W ) =
〈
T A
w1 , . . . , T A

wr

〉
have the same number of components.

Theorem (DKK) : For mirror decompositions,

rk(K0(T B
fi

)) = rk(K0(T A
wi )).



Birational Approach

Question 2 : Does HMS respect these decompositions?

Toric Setting The resulting decompositions

D(X ) =
〈
T B
f1 , . . . , T

B
fr

〉
,

FS(W ) =
〈
T A
w1 , . . . , T A

wr

〉
have the same number of components.

Theorem (DKK) : For mirror decompositions,

rk(K0(T B
fi

)) = rk(K0(T A
wi )).



Birational Approach

Question 2 : Does HMS respect these decompositions?

Toric Setting The resulting decompositions

D(X ) =
〈
T B
f1 , . . . , T

B
fr

〉
,

FS(W ) =
〈
T A
w1 , . . . , T A

wr

〉
have the same number of components.

Theorem (DKK) : For mirror decompositions,

rk(K0(T B
fi

)) = rk(K0(T A
wi )).

Conjecture : There exists an equivalence of categories

T B
fi
∼= T A

wi .
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Elementary birational cobordisms

I Let (a0, . . . , ad) ∈ Zd+1 with ai 6= 0 for all i .

I Take X = Cd+1 and C∗ acting via
λ · (z0, . . . , zd) = (λa0z0, . . . , λ

ad zd).

I The unstable loci for the GIT quotients

B− = {(z0, . . . , zd) : zi = 0 for ai < 0},
B+ = {(z0, . . . , zd) : zi = 0 for ai > 0}.

I Let X± = X\B± and

X+/C∗ 99K X−/C∗

the associated VGIT.
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Elementary birational cobordisms

I Let ad+1 = −
∑d

i=0 ai and a = (a0, . . . , ad+1) ∈ Zd+2.

Theorem (BFK, HL)

If ad+1 < 0 then

D(X+/C∗) ∼=
〈
T B
a ,D(X−/C∗)

〉
where T B

a admits a complete exceptional collection〈
E0, . . . ,E−ad+1−1

〉
I Furthermore, there is a full and faithful embedding

F : T B
a → Deq(X )

for which F (Ei ) = OB−(i).
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Computing T B
a

I Want to compute the dg-algebra

End∗Coheq(X )(⊕
−ad+1−1
i=0 OB−(i))

in the dg category Coheq(X ).

I Given an equivariant sheaf F ,

Hom∗Coheq(X )(F(i),F(j)) ∼= End∗Coh(X )(F)(j−i)

and these isomorphisms are compatible with composition.

I An elementary computation shows there are
quasi-isomorphisms

End∗Coh(X )(OB−) ∼= Ext∗Coh(X )(OB− ,OB−),

∼= Ω∗X/B−
,

∼= Sym∗(V0 ⊕ V1).
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Computing T B
a

End∗Coh(X )(OB−) ∼= Sym∗(V0 ⊕ V1).

I Here, we take

V0 = C{zi : ai > 0},
V1 = C{dzi : ai < 0}[1].

So that Ra := Sym∗(V0 ⊕ V1) is a weighted, super-symmetric
algebra with wt(zi ) = ai and wt(dzi ) = −ai .

I Due to formality, and working in the category Ra-modZ, the
Yoneda functor yields an equivalence of categories

T B
a
∼= D

End∗

−ad+1−1⊕
k=0

Ra(k)

 -mod


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Examples

Ra = Sym∗(V0 ⊕ V1) ∼= End∗Coh(X )(OB−).

a Ra X+/C∗ X−/C∗

(1, 1,−2) C[z0, z1, dz2] P1 ∅

Ra(0) Ra(1)
z1

z0



Examples

Ra = Sym∗(V0 ⊕ V1) ∼= End∗Coh(X )(OB−).

a Ra X+/C∗ X−/C∗

(2, 3,−5) C[z0, z1, dz2] P(2, 3) ∅

Ra(0) Ra(1) Ra(2) Ra(3) Ra(4)

z0 z0

z1

z0
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Examples

Ra = Sym∗(V0 ⊕ V1) ∼= End∗Coh(X )(OB−).

a Ra X+/C∗ X−/C∗

(1, 2, 3,−1,−5) C[z0, z1, z2, dz3, dz4] OP(1,2,3)(−1) C3

Ra(0) Ra(1) Ra(2) Ra(3) Ra(4)
z0 z0 z0 z0

dz3 dz3 dz3 dz3

z1 z1z1

z2 z2
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has a unique critical point p with critical value q.
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Fukaya-Seidel for W : Y → C∗

Definition
Given an atomic Lefschetz fibration W , the n-unfolded category
A1/n of W is the directed A∞-subcategory

〈L0, . . . , Ln−1〉

of the Fukaya category F(W−1(∗)). The Fukaya-Seidel category
FS(W 1/n) is the category of twisted complexes Tw(A(W 1/n)).

Here

HomA1/n(Li , Lj) =


HomF(W−1(∗))(Li , Lj) if i < j ,

1i if i = j ,

0 if i > j .
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Fukaya-Seidel for W : Y → C∗

Alternatively, taking the pullback W̃ : Ỹ → C of W along exp
gives a periodic collection of critical values.



Fukaya-Seidel for W : Y → C∗

Restricting to a strip gives W̃S : ỸS → S .



Fukaya-Seidel for W : Y → C∗

Restricting to a strip gives W̃S : ỸS → S .

Theorem (Seidel)

There is an equivalence FS(W 1/n) ∼= FS(W̃S).



Mirror potentials to elementary birational cobordisms

I Let

Pd =

{
[Z0 : · · · : Zd+1] :

d+1∑
i=0

Zi = 0,Zi 6= 0

}
⊂ Pd+1

be the d-dimensional pair of pants.

I Given a = (a0, . . . , ad+1) ∈ Zd+2 with
∑d+1

i=0 ai = 0, consider
the pencil ψa : Pd+1 → P1 defined by

ψa([Z0 : · · · : Zd+1]) :=

∏
ai>0

Z ai
i :

∏
ai<0

Z−aii

 .

Observation (GKZ, DKK)

The function Wa = ψa|Pd
is an atomic Lefschetz fibration.
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HMS for elementary birational cobordisms

The potential Wa appears in DKK as the equivariant quotient by
Z/ad+1 of the homological mirror potential W to the VGIT
defined by (a0, . . . , ad).

Theorem (K.)

For any 0 ≤ n ≤
∑

ai>0 ai there is a strict, fully faithful functor

Φ : A1/n → Ra-modZ

for which

Φ(Lk) = Ra(k).
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Two corollaries

Letting T A
a = FS(W 1/−ad+1) the theorem implies,

Corollary

There is an equivalence T B
a
∼= T A

a .

As a special case when ai > 0 for all i 6= d + 1,

Corollary

HMS holds for weighted projective spaces

D(P(a0, . . . , ad)) ∼= FS(W
1/−ad+1
a ) = FS(W HV

a ).
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Base case d = 1

Assume a = (a0, a1, a2) ∈ Z3 satisfies a0, a1 > 0. Parameterize
P1
∼= P1\{0,−1,∞} with [Z0 : Z1]. Then

Wa([Z0 : Z1]) =
Z a0
0 Z a1

1

(−Z0 − Z1)a0+a1

is an (a0 + a1)-fold branched covering with ramification degree
a0, a1 and a2 at 0,∞ and −1, respectively, and a single critical
point at [a0 : a1] ∈ P1. The admissible path δ0 from Wa([a0 : a1])
to zero has vanishing thimble equal to the component of W−1(δ0)
containing [a0, a1].
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∞
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Example a = (2, 3,−5)

Ra(0) Ra(1) Ra(2) Ra(3) Ra(4)

L0 L1 L2 L3 L4

Φ

z0 z0

z1

z0

z1

z0 z0

z1

z0

z1



The logarithmic picture

To better understand the Floer theory of the vanishing thimbles
Ti , consider the logarithm log : P1 → C\(πi + 2πiZ).

exp

T0 T1 T2 T3 T4



The logarithmic picture

To better understand the Floer theory of the vanishing thimbles
Ti , consider the logarithm log : P1 → C\(πi + 2πiZ).

exp

T0 T1 T2 T3 T4

As the slope of Ti is decreasing relative to i , any holomorphic
polygon with counter-clockwise boundary on the thimbles
{Ti1 , . . . ,Tim} with ij < ij+1 must be a triangle.



Induction Step

I Assume the theorem holds for dim < d and let
a = (a0, . . . , ad+1). We may assume that a0, a1 > 0 (or apply
Koszul duality).

I In order to understand the Floer theory for Hom(Li , Lj), we
must understand the geometry of W−1

a (∗).

I We accomplish this by choosing an auxiliary Lefschetz
fibration

f ([Z0 : · · · : Zd+1]) = [Z0 : Z1 : −Z0 − Z1]

I Taking D = {Z0 + Z1 = 0} ⊂ Pd and Ft = W−1
a (t)\D, f

restricts to a Lefschetz fibration

f : Ft → P1

for all Wa regular values t.
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Induction Step

Lemma (K.)

Letting

b = (a0 + a1, a2, . . . , ad+1) ∈ Zd+1,

c = (a0, a1,−a0 − a1) ∈ Z3,

Ft is the pullback

Ft Pd−1

P1 C∗

f Wb

tW−c

Corollary

The vanishing cycles Li of Wa are f -matching cycles over the
thimbles Ti for Wc. Furthermore, Li is the pullback along tW−c of
a vanishing thimble of Wb.
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Example a = (2, 3, 1,−2,−4)

Here b = (5, 1,−2,−4) and c = (2, 3,−5).
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Here b = (5, 1,−2,−4) and c = (2, 3,−5).

T0 T4

Consider just two of these thimbles.



Example a = (2, 3, 1,−2,−4)

Here b = (5, 1,−2,−4) and c = (2, 3,−5).

f

T0 T4

The corollary asserts that the Wa vanishing cycles La
0, L

a
4 are

fibered over T0,T4 via f , collapsing at its endpoints.



Example a = (2, 3, 1,−2,−4)

Here b = (5, 1,−2,−4) and c = (2, 3,−5).

f

T0 T4

This gives a decomposition

HomFS(Wa)(La
0, L

a
4) = CF ∗(La

0, L
a
4) = ⊕y∈T0∩T4CF ∗(Lb

0,y , L
b
4,y )



Example a = (2, 3, 1,−2,−4)

Here b = (5, 1,−2,−4) and c = (2, 3,−5).

f

T0 T4

Implying HomFS(Wa)(La
0, L

a
4) is isomorphic to

HomFS(Wb)(Lb
0, L

b
0)⊕ HomFS(Wb)(Lb

0, L
b
2)⊕ · · ·

· · · ⊕HomFS(Wb)(Lb
0, L

b
4)⊕ HomFS(Wb)(Lb

0, L
b
1).



Example a = (2, 3, 1,−2,−4)

Here b = (5, 1,−2,−4) and c = (2, 3,−5).

f

T0 T4

By induction, we have HomFS(Wa)(La
0, L

a
4) is isomorphic to

C · {1} ⊕ C · {dz̃2} ⊕ C · {dz̃3} ⊕ C · {z̃1} ⊂ Rb.



Example a = (2, 3, 1,−2,−4)

Here b = (5, 1,−2,−4) and c = (2, 3,−5).

f

1

z0

z20

z1

T0 T4

Taking z̃j , dz̃i ∈ Rb to zj+1, dzi+1 ∈ Ra, and multiplying by a
power of z0 or z1 (depending on the summand), we obtain

C · {1} ⊕ C · {dz̃2} ⊕ C · {dz̃3} ⊕ C · {z̃1} ⊂ Rb,

C · {z2
0} ⊕ C · {z0dz3} ⊕ C · {dz4} ⊕ C · {z1z2} = Ra(4)



Example a = (2, 3, 1,−2,−4)

Here b = (5, 1,−2,−4) and c = (2, 3,−5).

f

1

z0

z20

z1

T0 T4

This yields the isomorphism of vector spaces

Φ : Hom
FS(W

1/n
a )

(La
0, L

a
4)

∼=−→ Ra(4).



Induction Step

This decomposition is compatible with the Floer product, which
defines the functor Φ on morphisms.

Utilizing the observation that only holomorphic triangles exist
bounding the thimbles Ti , one obtains a formality result on the
n-th unfolded category A1/n. This gives that Φ is an equivalence
of categories.



Induction Step

This decomposition is compatible with the Floer product, which
defines the functor Φ on morphisms.
Utilizing the observation that only holomorphic triangles exist
bounding the thimbles Ti , one obtains a formality result on the
n-th unfolded category A1/n. This gives that Φ is an equivalence
of categories.



Future directions

Recall that the original conjecture was an equivalence of
decompositions

D(X ) =
〈
T B
f1 , . . . , T

B
fr

〉
,

FS(W ) =
〈
T A
w1 , . . . , T A

wr

〉
.

I To check this holds, we must identify (T B
fi
, T B

fi+1
) and

(T A
wi , T A

wi+1) bimodules, which glue the pieces together, and
prove their equivalence.

I At a more elementary level, the equivalence between T B
a and

T A
a must be shown in the case when some ai = 0 (e.g.

blowing up subvarieties of positive dimension).
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