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Birational Approach

Question 1 : What are natural decompositions for either side of
this equivalence?

B-model answer : If X admits a minimal model or VGIT sequence
f , f
X =23 Xq =25 oo =2a X,

then
D(X) = (T#,.... TE,D(X,)).

If X, =0, then this fully decomposes D(X) in terms
of wall contribution categories.
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Birational Approach

Question 1 : What are natural decompositions for either side of
this equivalence?

A-model answer : Take the following steps
Step 1 : Replace W : X™r — C with w where

Xmir4,u
| ]
C—— M

and 7 : U4 — M is a moduli stack of hypersurfaces of
Xmir-



Birational Approach

Question 1 : What are natural decompositions for either side of
this equivalence?
A-model answer : Take the following steps
Step 2 : Compactify the range C of the superpotential W

where
)_<mir N Z/_f

I
Pl — A4

and 7 : U — M is a compactified moduli stack of
stable hypersurface degenerations of X™".



Birational Approach

Question 1 : What are natural decompositions for either side of

this equivalence?
A-model answer :

: Take the following steps
Step 3 : Consider a 1-parameter degeneration w; of w = wy
Xmir — 17
1T
P! x D* 5 M

where D is the unit disc and D* = D\{0}.



Birational Approach

Question 1 : What are natural decompositions for either side of
this equivalence?

A-model answer : Take the following steps

Step 4 : Consider the degenerate potential wg of w; which
is a map .
wo = Uw{ - UfPY — M.

|



Birational Approach

Question 1 : What are natural decompositions for either side of
this equivalence?

A-model answer : Take the following steps

Step 5 : Taking W; to be the pullback of U along wj, and
T2 = FS(W;), there is a semi-orthogonal
decomposition

FS(W):< A7;VA>

|
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Birational Approach

Question 2 : Does HMS respect these decompositions?

Toric Setting : Diemer, Katzarkov, K. (DKK) give an explicit
prescription for taking a VGIT sequence

f % f,
X 25 Xg 25205

to a degeneration w; of mirror potentials.
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Birational Approach

Question 2 : Does HMS respect these decompositions?

Toric Setting The resulting decompositions

D(X) = (TE....TE),
FS(W):<Tl, T;‘>

w

have the same number of components.

Theorem (DKK) : For mirror decompositions,
rk(Ko(Ty)) = rk(Ko(Toh))-

Conjecture : There exists an equivalence of categories

B ~ A
TE=T.
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Elementary birational cobordisms

v

Let (ao,...,aq) € Z9! with a; # 0 for all i.

Take X = C9*! and C* acting via
A (z20,...,29) = (APz,..., A% zy).

v

» The unstable loci for the GIT quotients
B_ ={(z,...,24) : zt =0 for a; < 0},
B: ={(z0,...,24) : zz =0 for a; > 0}.

v

Let Xy = X\Bx and
X+/(C* -= X,/C*

the associated VGIT.
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Elementary birational cobordisms

d
> Let agy1 = — > - ga; and a= (ag,...,aq41) € Z912.

Theorem (BFK, HL)
If ag41 < 0 then

D(X,/C*) = (T, D(X-/C))

where 7;8 admits a complete exceptional collection

<E0> ce E,ad+1,1>

> Furthermore, there is a full and faithful embedding
F: TP = DY(X)

for which F(E;) = Og_(i).
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Computing T2
» Want to compute the dg-algebra
Endopeax) ;56 '05_(i))
in the dg category Coh®i(X).
» Given an equivariant sheaf F,
Hom'opea(x) (F(1): F () = Endiconx (F)-i)

and these isomorphisms are compatible with composition.

» An elementary computation shows there are
quasi-isomorphisms

Endonx)(OB_) = Exteonx) (OB, OB_),

=05
= Sym*(Vg D \/1).



Computing T2

Endonx)(OB_) = Sym™(Vo & V).
» Here, we take

Vo = C{z : a; > 0},
Vi = C{dz : a; < 0}[1].

So that R, := Sym*(Vp & V1) is a weighted, super-symmetric
algebra with wt(z;) = a; and wt(dz;) = —a;.



Computing T2

Endonx)(OB_) = Sym™(Vo & V).
» Here, we take

Vo = C{z : a; > 0},
Vi = C{dz : a; < 0}[1].

So that R, := Sym*(Vp & V1) is a weighted, super-symmetric
algebra with wt(z;) = a; and wt(dz;) = —a;.

» Due to formality, and working in the category R,-mod?, the
Yoneda functor yields an equivalence of categories

—ag+1—1

T2=D|End* | €D Ra(k) | -mod
k=0



Examples

Ry = Sym*(Vo D Vl) = End*Coh(X)(OB—)'

a | R | xye | xge

(L1,-2) | Clozdz] | BY | 0

Z1

Ra(0) —/——= Ra(1)

20



Examples

Ry = Sym*(Vo D Vl) = End*Coh(X)(OB—)'

a | R | xye | xge
(2,3, —5) ‘ (C[Zo,zl,dZQ] ‘ P(2,3) ‘ Q)

/—\ % \ 2
e e U
Ra(1) Ra(2) Ra(3)

Ra(4)



Examples
Ry = Sym*(Vo D Vl) = End*Coh(X)(OB—)'

a | 3  xje | X

(1,2,3,—1,—5) ‘ (C[Z(),Zl,ZQ,dZ3,dZ4] ‘ OP(17273)(—1) ‘ (C3

Fo) 2

Ra(0) /= Ra(1) /= Ra(2) Ra(3) Ra(4)

dzs dzs dzs dz3
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Definition
A symplectic Lefschetz fibration W : Y — C* is called atomic if it

has a unique critical point p with critical value g.

Choosing a basepoint *, the path Jgp gives the vanishing thimble
To C Y and the vanishing cycle Lo € W~1(%).
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Definition
A symplectic Lefschetz fibration W : Y — C* is called atomic if it

has a unique critical point p with critical value g.
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Applying monodromy gives paths &g, d1,...,d,—1 and a collection
of vanishing cycles Lo, L1,...,L,—1 C W™L(x).




Fukaya-Seidel for W : Y — C*

Definition
A symplectic Lefschetz fibration W : Y — C* is called atomic if it

has a unique critical point p with critical value g.

v 7 7
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Applying monodromy gives paths &g, d1,...,d0,-1 and a collection
of vanishing cycles Lo, L1,...,L,_1 C W™L(x).




Fukaya-Seidel for W : Y — C*

Definition
Given an atomic Lefschetz fibration W, the n-unfolded category
A" of W is the directed A..-subcategory

(Los- - Ln-1)

of the Fukaya category F(W~1(x)). The Fukaya-Seidel category
FS(W?/") is the category of twisted complexes Tw(A(W?1/")).



Fukaya-Seidel for W : Y — C*

Definition
Given an atomic Lefschetz fibration W, the n-unfolded category
A" of W is the directed A..-subcategory

(Loy .-y Ln-1)
of the Fukaya category F(W~1(x)). The Fukaya-Seidel category
FS(W?/") is the category of twisted complexes Tw(A(W?1/")).
Here
Hom rw 100 (Li, L) if i <,
Hom yu/n(Li, Lj) = { Li if i =,
0 if i >J.



Fukaya-Seidel for W : Y — C*
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Alternatively, taking the pullback W:Y —Cof W along exp

gives a periodic collection of critical values.



Fukaya-Seidel for W : Y — C*
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Restricting to a strip gives Ws : \N/S — S.



Fukaya-Seidel for W : Y — C*

Restricting to a strip gives Ws : \N/S — S.

Theorem (Seidel)
There is an equivalence FS(W/") = FS(Ws).
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Mirror potentials to elementary birational cobordisms

> Let

d+1
Pd:{[Zoi"'izd+1]ZZZi=07Zf7é0}CIP"“

i=0

be the d-dimensional pair of pants.
» Given a = (ag, ...,ad11) € Z972 with Zf’jol a;j = 0, consider
the pencil 1), : P91 — P! defined by

valZo: - Zaal) = |[[ 2" ][] 27

a;>0 a;<0

Observation (GKZ, DKK)

The function Wy = 1)a|p, is an atomic Lefschetz fibration.
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7Z/aq+1 of the homological mirror potential W to the VGIT
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HMS for elementary birational cobordisms

The potential W, appears in DKK as the equivariant quotient by
7Z/aq+1 of the homological mirror potential W to the VGIT
defined by (ag, ..., aq).

Theorem (K.)
Forany0<n< Za,->0 a; there is a strict, fully faithful functor

oAV ,‘:\’;,,—modZ

for which
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There is an equivalence T.2 = TA.



Two corollaries

Letting 7,2 = FS(W?/~2¢+1) the theorem implies,

Corollary
There is an equivalence T.2 = TA.
As a special case when a; > 0 for all i 2d+1,

Corollary
HMS holds for weighted projective spaces

D(P(ao,.. ., aq)) = FS(WL/ 241y = FS(WHY).
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Base case d =1

Assume a = (ag, a1, a2) € Z> satisfies ap, a; > 0. Parameterize
P; = P1\{0, -1, 00} with [Zy : Z1]. Then

Z20 72
(_ZO — Zl)ao+al

Wa([2o : 41]) =

is an (ap + a1 )-fold branched covering with ramification degree
ap, a1 and ap at 0,00 and —1, respectively, and a single critical
point at [ap : a1] € P1. The admissible path dp from Wa([ao : a1])
to zero has vanishing thimble equal to the component of W~1(dp)
containing [ao, a1].
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Z1
20 20
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Lo Ly L
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Example a = (2,3, —5)

Z1 Z1

Oﬁw

L Ly~ 2Ly
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The logarithmic picture

To better understand the Floer theory of the vanishing thimbles
T;, consider the logarithm log : P1 — C\(7i + 27iZ).




The logarithmic picture

To better understand the Floer theory of the vanishing thimbles
T;, consider the logarithm log : Py — C\(7i + 27iZ).

As the slope of T; is decreasing relative to 7, any holomorphic
polygon with counter-clockwise boundary on the thimbles
{Ti,..., Ti,} with i < ijy1 must be a triangle.



Induction Step

» Assume the theorem holds for dim < d and let
a=(ap,...,a4+1). We may assume that ap,a; > 0 (or apply
Koszul duality).



Induction Step

» Assume the theorem holds for dim < d and let
a=(ap,...,a4+1). We may assume that ap,a; > 0 (or apply
Koszul duality).

> In order to understand the Floer theory for Hom(L;, L;), we
must understand the geometry of W, 1(x).



Induction Step

> Assume the theorem holds for dim < d and let
a=(ap,...,a4+1). We may assume that ap,a; > 0 (or apply
Koszul duality).

> In order to understand the Floer theory for Hom(L;, L;), we
must understand the geometry of W, 1(x).

» We accomplish this by choosing an auxiliary Lefschetz
fibration

f([Zo:-:Zys1]) =20 L : =20 — Z4]



Induction Step

» Assume the theorem holds for dim < d and let
a=(ap,...,a4+1). We may assume that ap,a; > 0 (or apply
Koszul duality).

> In order to understand the Floer theory for Hom(L;, L;), we
must understand the geometry of W, 1(x).

» We accomplish this by choosing an auxiliary Lefschetz
fibration

f([Zo:-:Zys1]) =20 L : =20 — Z4]

» Taking D ={Zy+ 21 =0} C Py and F; = Wa_l(t)\D, f
restricts to a Lefschetz fibration

f:Ft—>P]_

for all W, regular values t.



Induction Step
Lemma (K.)
Letting
b= (a+a1,a,...,a441) € 29T,
c = (ap, a1, —ao — a1) € Z°,

F; is the pullback
F¢e —— Pg-1

\ ‘W.,
tW_,

P, — C*



Induction Step

Lemma (K.)
Letting

b= (a+a1,a,...,a441) € 29T,

c = (ap, a1, —ao — a1) € Z°,

F; is the pullback
F¢e —— Pg-1

h BW.,
tW_,

P, — C*

Corollary

The vanishing cycles L; of W, are f-matching cycles over the
thimbles T; for Wc. Furthermore, L; is the pullback along tW_. of
a vanishing thimble of W,.
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Example a = (2,3,1, —2, —4)
Here b = (5,1, -2, —4) and c = (2,3, -5).

To Ty

Consider just two of these thimbles.



Example a = (2,3,1, —2, —4)
Here b = (5,1, -2, —4) and c = (2,3, -5).

To Ty

The corollary asserts that the W, vanishing cycles L§, L are
fibered over Ty, T4 via f, collapsing at its endpoints.



Example a = (2, 3,1,-2,-4)
Here b = (5,1,-2,—4) and c = (2

3, —

To Ty

This gives a decomposition

Hompsw,) (L5, L) = CF*(Lg, Lg) =

EB}’GTOOT4 CF* (LO Y L4,y)



Example a = (2,3,1, —2, —4)
Here b = (5,1, -2, —4) and c = (2,3, -5).

To

Implying Homgs(,)(L5, L3) is isomorphic to

Homges(wy,) (LD, L§) & Homes ) (Lo, L3) & - -
. '@HomFS(Wb)(Lga L) & HomFS(W.,)(Lg, L?).



Example a = (2,3,1, —2, —4)
Here b = (5,1, -2, —4) and c = (2,3, -5).

To Ty

By induction, we have Homgg(,)(L§, L3) is isomorphic to

C‘{l}@(c'{d?z}@@-{d?g,}@@-{?l}CRb.



Example a = (2,3,1, —2, —4)
Here b = (5,1, -2, —4) and c = (2,3, -5).

T
22 : = U
20 . ~—— @\
o
. ~ NS
[l (1
20 . —
° f
= —  ~ /N
(- gl
1 — SV
[}
< T N
z1 — =
[}
To

Taking Z;,dZ; € Ry to zj11,dzi11 € Ra, and multiplying by a
power of zy or z; (depending on the summand), we obtain
C-{1}aC-{dz}aC-{dz3} ®C-{z} C Ry,

C- {Zg} e C- {ZodZ3} e C- {dZ4} eC- {2122} = Ra(4)



Example a = (2,3,1, —2, —4)
Here b = (5,1, -2, —4) and c = (2,3, -5).
N L T

o
>
20 f
1 <
o
— o>
z1 [ — —

To Ty

This yields the isomorphism of vector spaces

® : Hom (L3, 13) =5 Ra(4).

FS(W, /™)



Induction Step

This decomposition is compatible with the Floer product, which
defines the functor ® on morphisms.



Induction Step

This decomposition is compatible with the Floer product, which
defines the functor ® on morphisms.

Utilizing the observation that only holomorphic triangles exist
bounding the thimbles T;, one obtains a formality result on the
n-th unfolded category A'/". This gives that ® is an equivalence
of categories.
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decompositions
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» To check this holds, we must identify (7755,7%51) and
(TA mﬂ) bimodules, which glue the pieces together, and

wi?
prove their equivalence.



Future directions

Recall that the original conjecture was an equivalence of
decompositions

D(X) = (TE,....TF).
FS(W) = <TATVj‘>

w

» To check this holds, we must identify (775,3,77551) and
(7,4, 72.1) bimodules, which glue the pieces together, and

w
prove their equivalence.

» At a more elementary level, the equivalence between 7.2 and

T2 must be shown in the case when some a; = 0 (e.g.
blowing up subvarieties of positive dimension).
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