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@ Introduction



@ Many diseases are characterized or diagnosed by
biomarkers.

@ Diabetes: fasting plasma glucose;
Obesity: BMI or WH ratio;
Cancer: tumor size or imaging markers

@ Only a very small fraction of populations are diagnosed as
disease so their disease biomarkers are likely to be
extreme compared to normal population.

@ Standard normal distributions or other heavy-tail
distributions may not be appropriate for modelling disease
biomarker distributions.



@ The Atherosclerosis Risk in Communities (ARIC) study is a
prospective study of risk factors for atherosclerosis in 4 US
communities.

@ FPG values are used to determine diabetic status (fasting
FPG> 126mg/dl, non-fasting glucose > 200mg/dl).

@ The distribution of FPG from visit shows a long but thin tail
of FGP values.
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@ Many disease biomarkers in population tend to have a
stochastically monotone trend due to natural aging
processes and degrading metabolism in human bodies.

@ For example, the likelihood of having higher FPG values or
BMI increases with aging.

@ Measurement error is inevitable: the coefficient of variation
for the measurement error in laboratory glucose values is
3.5~9%.



@ We propose a semiparametric regression model to model
extreme-value distributed biomarkers.

@ The model incorporates stochastically monotone
distribution of biomarkers.

@ We will account for measurement error for inference.



© Model and Inference



@ Let Y*(t) denote true disease biomarker (no error) at time
t and X are baseline risk factors.

@ Our model assumes
P(Y*(1) < y) = exp {~A(t)e™ XLy >0,

@ Unknown parameters include p, 5 and A(t).
@ A(t) is positive and increasing.



@ At each fixed time t, this is an extreme-value distribution.

@ Different X leads to location shift of this distribution by
XTB/p.

@ Since A(t) is increasing, Y*(t) is stochastically increasing:
Y*(t) < Y* (k).



@ There is an interesting connection of the proposed model
to a threshold-defined event.

@ For any threshold value &, define T, as the first time that
biomarker value passes £ (assuming increasing biomarker
values).

@ For example, in ARIC study, if ¢ = 126mg/dl and Y*(t) is
FPG, then T;6 is clinically meaningful time to diabetic
incidence.



@ Assume that Y*(t) has an increasing trajectory. Note
P(Te <t) = P(Y*(t) > €).
@ Our model implies a proportional hazard model for each T¢:
Ne(t) = A(t)exp { —ug + X8}

@ Thus, 8 can be understood as the common log-hazard
ratios of risk factors on threshold-defined disease
incidence.



@ Data are obtained cross-sectionally: Y;j(v;), X; where v; is
the measurement time or age.
@ Since Y;(t) is contaminated with measurement error, we
assume
Yi(t) = Y7 (t) + N(0,52).
@ Measurement error is independent and additive.

@ Assume measurement time v; to be non-informative and o2
known.
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@ We estimate A as a step function with positive jumps at
unique values of v;’s.

@ We treat the likelihood function as from missing data where
¢ is missing for each subject.

@ In some sense, we “pretend” each patient to have
individual threshold value &; and the likelihood concerns
Te,.

@ EM algorithm is adopted for maximization.



@ In the M-step, we update ¢ and 3 using the
Newton-Raphson.

@ We update A by maxmizing

K n
Q) = D7 > (Vi = Vi) E(~ M€ log A | Yi(v), 6.
k=1 i=1
(1)

@ The latter is a concave function over a convex cone
0< A < < Agk.

@ The E-step involves one-dimensional numerical integration
with respect to ¢ based on Gaussian quadratures.



@ We explicitly estimate the efficient influence functions for 5
and . so the variance can be estimated using the empirical
variance of this influence function.

@ The unknown parameters in the influence functions can be
estimated using data.

@ The latter involves one-dimensional kernel density
estimation.



Let 6 = (8, p).
e Consistency: |6 — 6] + sup, |A(v) — A(t)| —p 0.
@ Convergence rate: d((0,A), (6,A)) = Op(n~1/3).
@ Asymptotic normality and efficiency:
V(6 — ) =4 N0, 1(6)1).
@ Consistency of variance estimator.



© simulation Study



@ Consider two covariates: X; ~ Ber(0.5), Xo ~ N(0,0.1)
@ Weset A(t) =2t"/5, y=0.5and 8y = B2 = 0.3.
@ Measurement error is from N(0, 02) where o2 = 0.25.

@ We consider time points from discrete set
{0.1,0.2,0.4,0.8} or uniformly from [0, 1].



@ Recall that our model is equivalent to Cox PHM for
threshold-defined time event.

@ One alternative is to consider a fixed threshold and its
corresponding time-to-event; then data will reduce to
current status data for this event which can be analyzed
using Cox model for current status data (e.g., ICM).

@ We compare the results for threshold values chosen to be
90-, 80- and 70-quantile of data.



Sample Variance Par True
size ratio Value Bias SE ASE CP
400 0.04 1 0.5 0.013 0.024 0.023 0.930
B 0.3 0.010 0.104 0.122 0.977
B> 0.3 0.000 0.174 0.195 0.981
0.16 I 1.0 0.028 0.054 0.053 0.924
B4 0.3 0.009 0.118 0.135 0.974
B> 0.3 0.002 0.213 0.214 0.951
800 0.04 I 0.5 0.007 0.016 0.016 0.940
B4 0.3 0.001 0.081 0.084 0.955
B> 0.3 0.002 0.121 0.132 0.966
0.16 1 1.0 0.014 0.040 0.036 0.920
B4 0.3 0.001 0.086 0.092 0.960
B> 0.3 0.000 0.148 0.146 0.941




n q(90%) q(80%) q(70%)
Bias SE Bias SE Bias SE
400 0.04 p; -0.004 0.189 -0.002 0.160 0.000 0.148
B> 0.004 0281 0.010 0.260 0.009 0.240
0.16 3¢y -0.005 0.352 -0.004 0.247 -0.015 0.193
B> -0.003 0540 -0.011 0.387 -0.010 0.300
800 0.04 By 0.002 0.124 -0.002 0.112 -0.004 0.102
B> -0.006 0.201 -0.009 0.183 -0.008 0.167
0.16 3¢y -0.001 0.235 -0.005 0.168 -0.009 0.132
B> -0.031 0.377 -0.016 0.274 -0.015 0.212
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@ Our method performs well and is always more efficient
than ICM method.

@ ICM is biased if measurement error is not small.



@ Application to ARIC Study



@ The whole data consist of about 12,000 subjects from 4
counties.

@ Due to computation burden, we restrict analysis to 1,560
Caucasian females from Forsyth County, North Carolina.

@ Each subject had up to 4 visits; however, since participants
were instructed to take medicine or prevention (dietary
change) after diagnosis of diabetes after visit 2, the
follow-up FPG values could be changed especially for
extreme-tail patients.

@ We thus restrict analysis to visit 2 data.



@ Visit times are random:
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@ The covariates include age, BMI, current smoking status,
and hypertension.

@ FPG values below 75 mg/dl were winsorized to reduce the
influence of outliers in the lower tail of the distribution,
because our interest is in crossing a threshold towards the
upper end of the distribution.



Our method
Label Estimate ASE. p-value

Results using all the data
Threshold effect 1.35 0.028 <0.001
Current smoker 0.203  0.055 <0.001
Hypertension 0.382 0.062 <0.001
Age (years) 0.016  0.004 <0.001
BMI (kg/m?) 0.035 0.006 <0.001

Results using the data with 6 outliers excluded

Threshold effect 1.35 0.028 <0.001
Current smoker 0.167  0.050 <0.001
Hypertension 0.403 0.060 <0.001
Age (years) 0.015  0.004 <0.001
BMI (kg/m?) 0.032  0.005 <0.001




@ The covariates current smoking, hypertension, higher age,
and higher BMI have strongly significant associations with
FPG level so diabetes.

@ Smokers and subjects with hypertension have 1.22 times
and 1.46 times greater hazard of diabetes than
non-smokers and normotensive subjects, respectively.

@ For each 1-year increase in age, the hazard of diabetes
increases by a factor of 1.02; when BMI increases by 1
kg/m?, the hazard of diabetes increases by a factor of
1.04.

@ Comparatively, the analysis of the ICM method gives very
different results in effect size and significance due to the
lack of events.



@ We generated predicted glucose values based on the
parameter estimation and covariate information and
measurement error randomly generated from the normal
distribution with mean 0 and variance 2.

@ Using the predicted values, Quantile-Quantile (QQ) plots
are generated to compare the distribution of the real
observed glucose values with the predicted distribution.

@ We calculated the residuals by subtracting the predicted
means from the real observed glucose values and made
residual plot.
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e Conclusion



@ We proposed a semparametric extreme-value model for
modelling disease biomarkers.

@ The model implies a proportional hazards model for
threshold-defined disease incidence.

@ We proposed semiparametrically efficient inference using
data with measurement errors.

@ The proposed method works well in real application.



@ The model and method can be extended to modelling
longitudinal disease biomarkers.

@ The inference can be extended to incorporate exact
observation of disease incidence for some fixed threshold
values.

@ Further development can be to incorporate multivariate or
even high-dimensional biomarkers for disease diagnosis.
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