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INTRODUCTION

DISEASE BIOMARKERS

Many diseases are characterized or diagnosed by
biomarkers.

Diabetes: fasting plasma glucose;
Obesity: BMI or WH ratio;
Cancer: tumor size or imaging markers

Only a very small fraction of populations are diagnosed as
disease so their disease biomarkers are likely to be
extreme compared to normal population.

Standard normal distributions or other heavy-tail
distributions may not be appropriate for modelling disease
biomarker distributions.



INTRODUCTION

ARIC EXAMPLE

The Atherosclerosis Risk in Communities (ARIC) study is a
prospective study of risk factors for atherosclerosis in 4 US
communities.

FPG values are used to determine diabetic status (fasting
FPG≥ 126mg/dl , non-fasting glucose ≥ 200mg/dl).

The distribution of FPG from visit shows a long but thin tail
of FGP values.
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INTRODUCTION

ADDITIONAL CHARACTERISTICS OF DISEASE

BIOMARKER MEASUREMENTS

Many disease biomarkers in population tend to have a
stochastically monotone trend due to natural aging
processes and degrading metabolism in human bodies.

For example, the likelihood of having higher FPG values or
BMI increases with aging.

Measurement error is inevitable: the coefficient of variation
for the measurement error in laboratory glucose values is
3.5∼9%.



INTRODUCTION

THE GOAL OF THIS WORK

We propose a semiparametric regression model to model
extreme-value distributed biomarkers.

The model incorporates stochastically monotone
distribution of biomarkers.

We will account for measurement error for inference.
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MODEL AND INFERENCE

MODEL

Let Y ∗(t) denote true disease biomarker (no error) at time
t and X are baseline risk factors.

Our model assumes

P(Y ∗(t) ≤ y) = exp
{
−Λ(t)e−µy+X Tβ

}
, µ > 0.

Unknown parameters include µ, β and Λ(t).

Λ(t) is positive and increasing.



MODEL AND INFERENCE

MODEL INTERPRETATION

At each fixed time t , this is an extreme-value distribution.

Different X leads to location shift of this distribution by
X Tβ/µ.

Since Λ(t) is increasing, Y ∗(t) is stochastically increasing:
Y ∗(t1) ≺ Y ∗(t2).



MODEL AND INFERENCE

CONNECTION TO THRESHOLD-DEFINED EVENT

There is an interesting connection of the proposed model
to a threshold-defined event.

For any threshold value ξ, define Tξ as the first time that
biomarker value passes ξ (assuming increasing biomarker
values).

For example, in ARIC study, if ξ = 126mg/dl and Y ∗(t) is
FPG, then T126 is clinically meaningful time to diabetic
incidence.



MODEL AND INFERENCE

CONNECTION (CONT.)

Assume that Y ∗(t) has an increasing trajectory. Note

P(Tξ ≤ t) = P(Y ∗(t) > ξ).

Our model implies a proportional hazard model for each Tξ:

λξ(t) = λ(t) exp
{
−µξ + X Tβ

}
.

Thus, β can be understood as the common log-hazard
ratios of risk factors on threshold-defined disease
incidence.



MODEL AND INFERENCE

OBSERVED DATA AND MEASUREMENT ERROR MODEL

Data are obtained cross-sectionally: Yi(vi),Xi where vi is
the measurement time or age.

Since Yi(t) is contaminated with measurement error, we
assume

Yi(t) = Y ∗i (t) + N(0, σ2).

Measurement error is independent and additive.

Assume measurement time vi to be non-informative and σ2

known.



MODEL AND INFERENCE

LIKELIHOOD FUNCTION

n∏
i=1

∫ ∞
−∞

exp(−Λ(vi)eX T
i β−µξ)

×Λ(vi)µexp(X T
i β − µξ)

1
σ
φ

(
Yi(vi)− ξ

σ

)
dξ



MODEL AND INFERENCE

NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION

We estimate Λ as a step function with positive jumps at
unique values of vi ’s.

We treat the likelihood function as from missing data where
ξ is missing for each subject.

In some sense, we “pretend” each patient to have
individual threshold value ξi and the likelihood concerns
Tξi .

EM algorithm is adopted for maximization.



MODEL AND INFERENCE

DETAIL OF THE ALGORITHM

In the M-step, we update µ and β using the
Newton-Raphson.

We update Λ by maxmizing

Q(Λ) =
K∑

k=1

n∑
i=1

I(vi = v(k))E(−ΛkeX T
i β−µξ+log Λk | Yi(vi), θ

(l)).

(1)

The latter is a concave function over a convex cone
0 ≤ Λ1 ≤ · · · ≤ ΛK .

The E-step involves one-dimensional numerical integration
with respect to ξ based on Gaussian quadratures.



MODEL AND INFERENCE

VARIANCE ESTIMATION

We explicitly estimate the efficient influence functions for β
and µ so the variance can be estimated using the empirical
variance of this influence function.

The unknown parameters in the influence functions can be
estimated using data.

The latter involves one-dimensional kernel density
estimation.



MODEL AND INFERENCE

ASYMPTOTIC RESULTS

Let θ = (β, µ).

Consistency: |θ̂ − θ|+ supv |Λ̂(v)− Λ(t)| →p 0.

Convergence rate: d((θ̂, Λ̂), (θ,Λ)) = Op(n−1/3).

Asymptotic normality and efficiency:√
n(θ̂ − θ)→d N(0, I(θ)−1).

Consistency of variance estimator.
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SIMULATION STUDY

SIMULATION SETTING

Consider two covariates: X1 ∼ Ber(0.5), X2 ∼ N(0,0.1)

We set Λ(t) = 2t1/5, µ = 0.5 and β1 = β2 = 0.3.

Measurement error is from N(0, σ2) where σ2 = 0.25.

We consider time points from discrete set
{0.1,0.2,0.4,0.8} or uniformly from [0,1].



SIMULATION STUDY

COMPARING WITH CURRENT-STATUS ANALYSIS

Recall that our model is equivalent to Cox PHM for
threshold-defined time event.

One alternative is to consider a fixed threshold and its
corresponding time-to-event; then data will reduce to
current status data for this event which can be analyzed
using Cox model for current status data (e.g., ICM).

We compare the results for threshold values chosen to be
90-, 80- and 70-quantile of data.



SIMULATION STUDY

OUR RESULTS

Sample Variance Par True
size ratio Value Bias SE ASE CP
400 0.04 µ 0.5 0.013 0.024 0.023 0.930

β1 0.3 0.010 0.104 0.122 0.977
β2 0.3 0.000 0.174 0.195 0.981

0.16 µ 1.0 0.028 0.054 0.053 0.924
β1 0.3 0.009 0.118 0.135 0.974
β2 0.3 0.002 0.213 0.214 0.951

800 0.04 µ 0.5 0.007 0.016 0.016 0.940
β1 0.3 0.001 0.081 0.084 0.955
β2 0.3 0.002 0.121 0.132 0.966

0.16 µ 1.0 0.014 0.040 0.036 0.920
β1 0.3 0.001 0.086 0.092 0.960
β2 0.3 0.000 0.148 0.146 0.941



SIMULATION STUDY

ICM RESULT

n q(90%) q(80%) q(70%)
Bias SE Bias SE Bias SE

400 0.04 β1 -0.004 0.189 -0.002 0.160 0.000 0.148
β2 0.004 0.281 0.010 0.260 0.009 0.240

0.16 β1 -0.005 0.352 -0.004 0.247 -0.015 0.193
β2 -0.003 0.540 -0.011 0.387 -0.010 0.300

800 0.04 β1 0.002 0.124 -0.002 0.112 -0.004 0.102
β2 -0.006 0.201 -0.009 0.183 -0.008 0.167

0.16 β1 -0.001 0.235 -0.005 0.168 -0.009 0.132
β2 -0.031 0.377 -0.016 0.274 -0.015 0.212



SIMULATION STUDY

ESTIMATE OF Λ(t)



SIMULATION STUDY

CONCLUSION FROM THE SIMULATION STUDY

Our method performs well and is always more efficient
than ICM method.

ICM is biased if measurement error is not small.
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APPLICATION TO ARIC STUDY

DATA DESCRIPTION

The whole data consist of about 12,000 subjects from 4
counties.

Due to computation burden, we restrict analysis to 1,560
Caucasian females from Forsyth County, North Carolina.

Each subject had up to 4 visits; however, since participants
were instructed to take medicine or prevention (dietary
change) after diagnosis of diabetes after visit 2, the
follow-up FPG values could be changed especially for
extreme-tail patients.

We thus restrict analysis to visit 2 data.



APPLICATION TO ARIC STUDY

MORE DATA INFORMATION

Visit times are random:

The covariates include age, BMI, current smoking status,
and hypertension.

FPG values below 75 mg/dl were winsorized to reduce the
influence of outliers in the lower tail of the distribution,
because our interest is in crossing a threshold towards the
upper end of the distribution.



APPLICATION TO ARIC STUDY

ANALYSIS RESULT

Our method
Label Estimate ASE. p-value

Results using all the data
Threshold effect 1.35 0.028 <0.001
Current smoker 0.203 0.055 <0.001
Hypertension 0.382 0.062 <0.001
Age (years) 0.016 0.004 <0.001
BMI (kg/m2) 0.035 0.006 <0.001
Results using the data with 6 outliers excluded

Threshold effect 1.35 0.028 <0.001
Current smoker 0.167 0.050 <0.001
Hypertension 0.403 0.060 <0.001
Age (years) 0.015 0.004 <0.001
BMI (kg/m2) 0.032 0.005 <0.001



APPLICATION TO ARIC STUDY

SUMMARY OF THE RESULTS

The covariates current smoking, hypertension, higher age,
and higher BMI have strongly significant associations with
FPG level so diabetes.

Smokers and subjects with hypertension have 1.22 times
and 1.46 times greater hazard of diabetes than
non-smokers and normotensive subjects, respectively.

For each 1-year increase in age, the hazard of diabetes
increases by a factor of 1.02; when BMI increases by 1
kg/m2, the hazard of diabetes increases by a factor of
1.04.

Comparatively, the analysis of the ICM method gives very
different results in effect size and significance due to the
lack of events.



APPLICATION TO ARIC STUDY

CHECK MODEL FIT

We generated predicted glucose values based on the
parameter estimation and covariate information and
measurement error randomly generated from the normal
distribution with mean 0 and variance σ2.

Using the predicted values, Quantile-Quantile (QQ) plots
are generated to compare the distribution of the real
observed glucose values with the predicted distribution.

We calculated the residuals by subtracting the predicted
means from the real observed glucose values and made
residual plot.



APPLICATION TO ARIC STUDY

MODEL CHECKING PLOT
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CONCLUSION

CONCLUSION

We proposed a semparametric extreme-value model for
modelling disease biomarkers.

The model implies a proportional hazards model for
threshold-defined disease incidence.

We proposed semiparametrically efficient inference using
data with measurement errors.

The proposed method works well in real application.



CONCLUSION

EXTENSION

The model and method can be extended to modelling
longitudinal disease biomarkers.

The inference can be extended to incorporate exact
observation of disease incidence for some fixed threshold
values.

Further development can be to incorporate multivariate or
even high-dimensional biomarkers for disease diagnosis.
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