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“There are two cultures in the use of statistical modeling to reach con-
clusions from data. One assumes that the data are generated by a
given stochastic data model. The other uses algorithmic models
and treats the data mechanism as unknown.”

Leo Breiman
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Kernels

A function
k ∶ Z × Z ↦ R, Z ⊂ Rd,

which is symmetric and positive definite is called a kernel function

Examples

Linear kernel:

kLinear(z1, z2) = zT1 z2 , z1, z2 ∈ Z ⊂ Rd

Gaussian RBF kernel:

kρ(z1, z2) = e−
∥z1−z2∥

2

ρ , z1, z2 ∈ Z ⊂ Rd
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Reproducing Kernel Hilbert Spaces

For a kernel k, for every fixed z0 ∈ Z ⊂ Rd define the function kz0(⋅)

kz0(z) = k(z0, z)

A kernel function k is called reproducing kernel for a Hilbert
space H if

kz0(⋅) ∈ H for all z0 ∈ Z.

The reproducing property holds:

h(z0) =< h, kz0 > , h ∈ H, z0 ∈ Z .
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Reproducing Kernel Hilbert Spaces

The space

Hpre = {
n

∑
i=1
αikzi(z) ∶ α = (α1, . . . , αn) ∈ Rn, z1, . . . , zn ∈ Z}

with the inner product

⟨
n

∑
i=1
αikzi(z),

m

∑
j=1

βjkzj(z)⟩ =
n

∑
i=1

m

∑
j=1

αiβjk(zi, zj)

is dense in the RKHS defined by the kernel k.

Clearly, the reproducing property holds for h(z) = ∑ni=1 αik(zi, z):

h(z) ≡
n

∑
i=1
αikzi(z) = ⟨

n

∑
i=1
αik(zi, ⋅), k(z, ⋅)⟩
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Properties of RKHS

Let H be defined by the Gaussian RBF kernel

kρ(z1, z2) = e−
∥z1−z2∥

2

ρ .

Assume that Z ⊂ Rd is compact.
Then H is dense in the C(Z), the class of continuous function on Z.
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Kernel Machines (Support Vector Machines)

Let D = {(Z1, Y1), . . . , (Zn, Yn) ∶ Zi ∈ Z, Yi ∈ R}
be n pairs of i.i.d. random vectors.

The kernel machine decision function hD,λ is given by

hD,λ = argmin
h∈H

1

n

n

∑
i=1
L(Yi, h(Zi)) + λ∥h∥2H

where
▸ H is a reproducing kernel Hilbert space (RKHS) with kernel k,
▸ λ > 0 is a regularization constant
▸ L is a loss function.

Kernel machine decision function is the minimizer of a penalized
empirical risk problem.

Yair Goldberg (Haifa-U) Inference for Kernel Machines 10 / 43



Kernel Machines (Support Vector Machines)

Let D = {(Z1, Y1), . . . , (Zn, Yn) ∶ Zi ∈ Z, Yi ∈ R}
be n pairs of i.i.d. random vectors.

The kernel machine decision function hD,λ is given by

hD,λ = argmin
h∈H

1

n

n

∑
i=1
L(Yi, h(Zi)) + λ∥h∥2H

where
▸ H is a reproducing kernel Hilbert space (RKHS) with kernel k,
▸ λ > 0 is a regularization constant
▸ L is a loss function.

Kernel machine decision function is the minimizer of a penalized
empirical risk problem.

Yair Goldberg (Haifa-U) Inference for Kernel Machines 10 / 43



Examples of Loss Functions

The hinge loss:

L(y, h(z)) = max{1 − y ⋅ h(z),0} , y ∈ {−1,1} .

The quadratic loss:

L(y, h(z)) = (y − h(z))2 .
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The Kernel Trick

The minimizer

hD,λ = argmin
h∈H

1

n

n

∑
i=1
L(Yi, h(Zi)) + λ∥h∥2H

can be written as

hD,λ(z) =
n

∑
i=1
αikZi(z) .

This representation is referred to as “the kernel trick”.

If the loss L is differentiable,

αi =
∂
∂2
L(yi, hD,λ(Zi))

nλ
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Theoretical Results: Universal Consistency

Theorem:
Let

1 H be a ‘large’ RKHS.

2 L be a convex Lipschitz continuous loss function.

Choose 0 < λn < 1 such that λn → 0, and λ2nn→∞.
Then the kernel machine method is universally consistent:
For every probability measure P ,

E [L(Y,hD,λn(Z))] P→ inf
h∈H

E [L(Y,h(Z))] .
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Theoretical Results: Universal Consistency

An equivalent representation to the kernel machine decision function:

hD,λ = argmin
h∈H,∥h∥2H≤a(λ−1)

1

n

n

∑
i=1
L(Yi, h(Zi))

where a(⋅) is some monotonic increasing function.
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Least Square Kernel Machines

The kernel machine decision function

hD,λ = argmin
h∈H

1

n

n

∑
i=1

(Yi − h(Zi))2 + λ∥h∥2H

can be derived explicitly

α̂n×1 = (Kn×n + λIn×n)−1Yn×1

where Kij = k(Zi, Zj) = e−
∥Zi−Zj∥

2

ρ .

Question: How to choose

the kernel bandwidth parameter ρ

the regularization parameter λ
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Semiparametric Least Square Kernel Machines

Let
D = {(X1, Z1, Y1), . . . , (Xn, Zn, Yn) ∶ Xi ∈ X ⊂ Rp, Zi ∈ Z, Yi ∈ R}
be n triples of i.i.d. random vectors.

The minimizer of

hD,λ = argmin
β∈Rp,h∈H

1

n

n

∑
i=1

(Yi − βTXi − h(Zi))2 + λ∥h∥2H

is given by

β̂ = {XTV −1X}−1XTV −1Y

α̂ = λ−1V −1 (Y −Xβ̂)

where V = (λ−1K + I)−1.
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Mixed Effect Model Representation

In this part I follow Liu, Lin, and Ghosh (2007).

Assume the following linear mixed model

Yn×1 =Xn×pβp×1 + hn×1 + εn×1,

where

ε ∼ N(0, σ2I),
h is random effect with distribution N(0, τK), τ = σ2/λ,

and h and ε are independent.

Note that Z appears implicitly in the variance of h.
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Bayesian Point of View

Assume the model
Y =Xβ + h + ε,

such that

y ∣ (β,h(z)) ∼ N{xTβ + h(z), σ2}
h(⋅) ∼ GP{0, τk(⋅, ⋅)}
β ∝ 1,
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Minimization Problem

The log posterior density for β and h is (up to a constant)

−(Y −Xβ − h)T (σ2I)−1(Y −Xβ − h) − hT (τK)−1h .

Writing h =Kα, and maximizing the log posterior density is equivalent
to minimizing

1

n

n

∑
i=1

(Yi − βTXi +Kα)2 + αTKα

which by the representation theorem is the same as minimizing

1

n

n

∑
i=1

(Yi − βTXi + h(Zi))2 + λ∥h∥2H

over all β ∈ Rp and h ∈ H
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LSKM vs LMM

Finding least square kernel machine decision function
is equivalent to

estimation in linear mixed effect model

Question: What do we gain from the mixed model representation?
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Topic 1: Estimation

We would like to estimate the following parameters:

1 the coefficient vector β,

2 the function hn×1 ≡Kn×nαn×1
3 the noise variance σ2,

4 the regularization constant λ or equivalently τ = λ−1σ2,
5 the kernel bandwidth parameter ρ.

We have n + p + 3 parameters to estimate and only n observations.
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Topic 1: Estimation

Given σ2, τ , and ρ:

▸ Estimation of β and h is done using the log posterior maximization
▸ Same estimators as standard kernel machine estimation

The parameters σ2, τ , and ρ can be estimated using REML.

Questions:
1 Are these estimators reasonable?

▸ Normality was only assumed for mathematical convenience.
▸ All the random effects are dependent.

2 Can it replace cross-validation?
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Topic 1: Estimation - Some Simulations

Setting A (Model holds): h ∼ GP{0, k(⋅, ⋅)}.
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Topic 1: Estimation - Some Simulations

Setting B (h fixed):
h(Z) = 10 cos(Z1) − 15Z2

2 + 10e−Z3Z4 − 8 sin(Z5) cos(Z3) + 20Z1Z5.
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Topic 1: Estimation - Some Simulations

Setting B (h fixed):
h(z) = 10 cos(z1) − 15z22 + 10e−z3z4 − 8 sin(z5) cos(z3) + 20z1z5 , z ∈ R5.

Yair Goldberg (Haifa-U) Inference for Kernel Machines 29 / 43



Topic 1: Estimation

Summary

Simulations seem to work when

LMM holds (h is random)

h is fixed but unknown

Problems
1 Does estimation using Linear Mixed Model work for

▸ Heteroscedastic noise?
▸ Higher dimensions?

2 What about asymptotic convergence for
▸ β and h
▸ σ2, λ, and the kernel bandwidth ρ
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Topic 2: Variance Estimation

Assume the Bayesian Model Y =Xβ + h + ε, such that

y ∣ (β,h(z)) ∼ N{xTβ + h(z), σ2}
h(⋅) ∼ GP{0, τk(⋅, ⋅)}
β ∝ 1,

The variance can be written as

Cov(β̂) = (XTV −1X)−1

Cov(ĥ − h) = τK − (τK)P (τK).

where

P = V −1 − V −1X (XTV −1X)−1XTV −1 , V = σ2I + τK .
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Topic 2: Variance Estimation

Assume the Frequentist model

Y =Xβ + h + ε,

such that

y ∣ (β,h(z)) ∼ N{xTβ + h(z), σ2}
h is fixed

The variance can be written as

Cov(β̂) = σ2(XTV −1X)−1XTV −1V −1X(XTV −1X)−1

Cov(ĥ) = σ2(τK)P 2(τK).

where

P = V −1 − V −1X (XTV −1X)−1XTV −1 , V = σ2I + τK .
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Topic 2: Variance Estimation

Questions
1 Under the Bayesian model, all observations are dependent

▸ Does Var(β̂) go to zero?
▸ Does Var(ĥ) go to zero?

2 Which one of the estimators (frequentist vs Bayesian) is better?
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Topic 2: Variance Estimation- Some Simulations

Setting A (model holds).
Setting B (h fixed):
h(Z) = 10 cos(Z1) − 15Z2

2 + 10e−Z3Z4 − 8 sin(Z5) cos(Z3) + 20Z1Z5.
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Topic 2: Variance Estimation- Some Simulations

Setting B (h fixed) with heteroscedastic noise:
h(Z) = 10 cos(Z1) − 15Z2

2 + 10e−Z3Z4 − 8 sin(Z5) cos(Z3) + 20Z1Z5.
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Topic 2: Variance Estimation - Bayesian Model

Consider the variance of ĥ

For simplicity assume Random Effect Model

Y = h + ε

Variance under Bayesian model

Cov(ĥ − h) = τK − (τK)V −1(τK) .

where V = τK + σ2I
Using matrix identities and assuming σ2 = 1,

Cov(ĥ − h) = I − V −1 = I − (I + λ−1K)−1.
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Topic 2: Variance Estimation - Frequentist Model

Consider the variance of ĥ

For simplicity assume random effect model

Y = h + ε

Variance under frequentist model

Cov(ĥ) = σ2(τK)V −2(τK) .

Using matrix identities and assuming σ2 = 1,

Cov(ĥ) = (I + λK−1)−2.
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Topic 3: Confidence Intervals for h(z)

For simplicity assume random effect model

Y = h + ε

Under the Bayesian model

Var(ĥ(z) − h(z)) = τ(1 − τKzV
−1Kz) ,

where Kz = (kz(Z1), . . . , kz(Zn))T .

Under the frequentist model

Var(ĥ(z)) = σ2(τKz)V −2(τKz) ,
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Topic 3: Confidence Intervals for h(z)
Setting A (model holds).
Setting B (h fixed):
h(Z) = 10 cos(Z1) − 15Z2

2 + 10e−Z3Z4 − 8 sin(Z5) cos(Z3) + 20Z1Z5.
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Topic 3: Confidence Intervals for h(z)
Setting B (h fixed) with heteroscedastic noise:
h(Z) = 10 cos(Z1) − 15Z2

2 + 10e−Z3Z4 − 8 sin(Z5) cos(Z3) + 20Z1Z5.
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Summary

There is a mathematical connection between Kernel Machines and
Mixed Effect Models

We discussed only least square kernel machines but similar
connections were established using Generalized Mixed Effect
Models

Questions

Estimation: Can the LMM posterior maximization replace cross
validation?

Inference for β: Under which assumption is reliable?

Confidence Intervals: Under which assumptions can they be
used?

Comment

Testing for h ≡ 0: Shown to work under the null.
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“Notions of significance tests, confidence intervals, posterior
intervals and all the formal apparatus of inference are valuable tools to
be used as guides, but not in a mechanical way; they indicate the un-
certainty that would apply under somewhat idealized, maybe
very idealized, conditions and as such are often lower bounds to real
uncertainty.”

D. R. Cox
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Towards Inference for Kernel Machines
Magic or Illusion?

Special thanks to

Yael Travis-Lumer (University of Haifa)

Malka Gorfine (Tel-Aviv University)

Yanyuan Ma (Pennsylvania State University)

Thank you all for listening.

Yair Goldberg (Haifa-U) Inference for Kernel Machines 43 / 43


	Reproducing Kernel Hilbert Spaces
	Kernel Machines
	Least Square Kernel Machines
	Mixed Effect Model Representation
	Problems

