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Notes on Contents

Talk is based on two papers:

Lewbel, A., (2016) "Nonlinear Random Coeffi cients," Working paper in
progress.

Lewbel, A., and K. Pendakur, (2016) “Unobserved Preference
Heterogeneity in Demand Using Generalized Random Coeffi cients,”
forthcoming, Journal of Political Economy.

Lewbel (BC) nonlinear random coeffi cients 2016 2 / 47



Introduction

Standard Linear Random Coeffi cients are

Y = ∑K
k=1 XkUk + U0

for regressors X = (X1, ...,XK ) and unobserved errors (random
coeffi cients) U = (U0,U1, ...,UK ).

Standard Assumptions: i) IID observations of Y ,X . ii) U is independent
of X . iii) X continuous.

Popular extension: Y = g
(

∑K
k=1 XkUk + U0

)
for known g , e.g., discrete

choice models like BLP.

Typical applications assume FU (U) is normal.

But for above models linear in X and linear in U, is known can
nonparametrically identify and estimate FU (U).
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This paper: Consider Nonlinear Random Coeffi cients:

Y = G (X1U1, ...,XKUK , θ) + U0

Identify parameter vector θ and nonparametric joint distribution FU with
known G .

Caveat: will add the strong restriction that U0 is independent of
(U1, ...,UK ), or that U0 is not present. Price we pay for general
nonlinearity.
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EXAMPLE: Let θ = (θ1, θ2, θ3, θ4) and g is any known, strictly monotonic
function.

Y = g [θ1X1U1X2U2 + θ2 ln (X2U2) + θ3X1U1 + θ4] (1)

Not chosen for behavioral meaning. Illustrates multiple types of
nonlinearities: a transformation function g , an interaction term between
X1U1 and X2U2, a linear term X1U1, and a nonlinear transformation of
X2U2.
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Motivating Examples

1. Additive indirect utility functions with unobserved preference
heterogeneity - random Barten (1964) scales. Yields budget share
Y = G (X1U1,X2U2) where Xj are prices divided by total expenditures.
Also add an independent U0 corresponding to measurement error in Y .

2. Production function Y = G (X1U1, ...,XKUK ). Y = output.
Xk = quantity of input or factor of production k (e.g., labor, capital).
Uk = unobserved quality of input k, or technology. Varies across firms.
Generalizes Matzkin (1994) who considers a single random component.

Allow for nonlinear utility in random coeffi cient discrete choice models like
Berry, Levinsohn, and Pakes (1995). Xk can be prices, income,
characteristics. BLP assumes utility of each choice is linear in X , making
market shares Y = g

(
∑K
k=1 XkUk

)
. for logistic g . But No economic

rationale exists for utility linear in X .
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Outline

1. Literature Review.

2. Identify FU in Y = G (X1U1, ...,XKUK ) for known G .

3. Identify θ and FU in Y = G (X1U1, ...,XKUK , θ)

4. Do example: Y = g [θ1X1U1X2U2 + θ2 ln (X2U2) + θ3X1U1 + θ4]

5. Extensions: append U0, discrete choice
D = I [V + G (X1U1, ...,XKUK ) + U0 ≥ 0]

6. Empirical application: Random Barten Scales (preference heterogeneity)
in Energy Demand.
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Literature Review

Nonparametric identification and estimation of random coeffi cients: Beran
and Hall (1992), Beran, Feuerverger, and Hall, (1996) and Hoderlein,
Klemelae, and Mammen (2010).

Recent generalizations include linear systems of equations with random
coeffi cients: Masten (2015), Hoderlein, Holzmann, and Meister (2015);
random coeffi cient linear index models in binary choice: Ichimura and
Thompson (1998), Gautier and Kitamura (2010); and semiparametric
extensions of McFadden (1974) and Berry, Levinsohn, and Pakes (1995)
type models, e.g., Berry and Haile (2009).

Matzkin (2003) in an appendix gives some generic identifying conditions
for additive models with unobserved heterogeneity. Hoderlein, Nesheim,
and Simoni (2011) give high level conditions for identification and
estimation of parametric models containing a vector of random parameters.
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Structural unobserved heterogeneity: Heckman and Singer (1984) and
Lewbel (2001). Recent general nonseparable identification and estimation:
Chesher (2003), Altonji and Matzkin (2005), Hoderlein, and Mammen
(2007), Matzkin (2007a, 2008), and Imbens and Newey (2009).

Preference heterogeneity in continuous demand systems: Engel (1895),
Sydenstricker and King (1921), Rothbarth (1943), Prais and Houthakker
(1955), Barten (1964), Pollak and Wales (1981), Ray (1992), Brown and
Walker (1989), McFadden and Richter (1991) Hildenbrand (1994), Lewbel
(1997, 2001, 2007, 2008), Comon and Calvet (2003), McFadden (2004)
Beckert (2006) Matzkin (2007, 2010), Beckert and Blundell (2008),
Blundell, Kristensen and Matzkin (2011), Blundell and Matzkin (2011),
Hoderlein and Stoye (2014), and Kitamura and Stoye (2014).

Additive separability and nonparametric additive regression: Gorman
(1976), Blackorby, Primont, and Russell (1978), Hastie and Tibshirani
(1990), Linton (2000), and Wood (2006).
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Joint Distribution Identification

Drop U0 for now. Later extensions bring U0 back, and allow for control
function type endogeneity.

First consider identification of the joint distribution FU (U) for
U = (U1, ...,UK ) with known G , so

Y = G (X1U1, ...,XKUK )

ASSUMPTION A1: FY |X (y | x) is identified (e.g., could have IID
observations of Y ,X ). G is continuous. U is independent of X .

Continuity of X and U is not required. X cannot be discrete, but its
distribution can, e.g., contain mass points. U can be continuous, discrete,
continuous with mass points, etc.
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Side Note: Why not look at the conditional distribution function or
characteristic function?

FY |X (y | x) =
∫
U∈supp(U )

G (x1U1, ..., xKUK ) dFU (U) dx1dx2

If this integral equation has a unique solution for FU given known G , then
FU is identified.

If identified, estimators could be based on this equation (or the conditional
characteristic function).

The identification problem: find restrictions on G that suffi ce to ensure a
unique FU .

Accomplished by devising easier to solve alternative expressions for
(features of) FU .

Lewbel (BC) nonlinear random coeffi cients 2016 11 / 47



Y = G (X1U1, ...,XKUK )

ASSUMPTION A2: supp (X ) is rectangular. The closure of supp (X )
equals the closure of supp (U1X1, ...,UKXK | U). The Moment Generating
Function of

(
U−11 , ...,U−1K

)
exists.

Suffi cient for Assumption A2 is supp (X ) = RK
+ and supp (U) ⊆ RK

+.
Alternatively, could have supp (X ) = RK and U has any support, but the
density of U must shrink quickly to zero as any element of U goes to zero.

We identify FU by identifying moments of the distribution of(
U−11 , ...,U−1K

)
. Necessary and suffi cient conditions for integer moments

to identify a distribution are known. Can replace existence of the MGF
with, e.g., Assumption 7 of Fox, Kim, Ryan, and Bajari (2012).
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Let t = (t1, ..., tK ) denote a K vector of positive integers. For a given
function h and vector t, define κt by

κt =
∫
supp(X )

h [G (s1, ...sK ) , t] s
t1−1
1 st2−12 ...stK−1K ds1ds2...dsK (2)

ASSUMPTION A3: Given G , for any K vector of positive integers t we
can find a nonnegative, bounded function h such that
h [G (s1, ...sK ) , t] s

t1−1
1 st2−12 ...stK−1K is absolutely integrable in s, and κt is

convergent and nonzero.

Restricts G , but note h is chosen knowing G and t.

When does an h exist? How to find it? If G grows relatively quickly in its
arguments, then h should look like a thin tailed density.
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Can show an h exists for any additive G that grows faster than linearly:

LEMMA 1: If supp (X ) = RK
+, Y = ∑K

k=1 Gk (UkXk ), and there exist
positive constants ck such that Gk (sk ) ≥ ck sk for k = 1, ...,K . Then
Assumption A3 holds.

PROOF of Lemma 1: Let h (G , t) = e−ρG for any ρ > 0. Then

κt =
K
∏
k=1

∫ ∞

0
e−ρGk (sk )stk−1k dsk ≤

K
∏
k=1

∫ ∞

0
e−ρck sk stk−1k dsk

=
K
∏
k=1

(ρck )
−tk

∫ ∞

0
e−rk r tk−1k drk =

K
∏
k=1

(ρck )
−tk Γ (tk )

which is finite and positive, because the gamma function Γ (tk ) is finite
and positive.
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An example that is not identified, an h does not exist:

If G (X1,X2) = ln (X1) + ln (X2)
then G (U1X1,U2X2) = [ln (U1) + ln (U2)] + ln (X1) + ln (X2).
FU (U) can’t be identified because can’t separate U1 from U2

Lemma 2: An h does not exist for G (X1,X2) = ln (X1) + ln (X2).
PROOF of Lemma 2: For any function h, change variables replacing s2
with r = s1s2 to get

κt =
∫ ∞

0

∫ ∞

0
h [ln (s1) + ln (s2) , t] s

t1−1
1 st2−12 ds1ds2

=
∫ ∞

0

∫ ∞

0
h [ln (r) , t] st1−t2−11 r t2−1ds1dr(∫ ∞

0
h [ln (r) , t] r t2−1dr

) ∫ ∞

0
st1−t2−11 ds1

and the second integral is not convergent for t1 > t2 − 1.
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Main Identification Theorem

ASSUMPTION A1: Y = G (X1U1, ...,XKUK ). FY |X (y | x) is identified
(e.g., could have IID observations of Y ,X ). G is continuous. U ⊥ X . U is
independent of X .

ASSUMPTION A2: supp (X ) is rectangular. The closure of supp (X )
equals the closure of supp (U1X1, ...,UKXK | U). The Moment Generating
Function of

(
U−11 , ...,U−1K

)
exists.

ASSUMPTION A3: Given G , for any K vector of positive integers t we
can find a nonnegative, bounded function h such that

κt =
∫
supp(X )

h [G (s1, ...sK ) , t] s
t1−1
1 st2−12 ...stK−1K ds1ds2...dsK

is absolutely integrable, convergent, and nonzero.

THEOREM 1: Let Assumptions A1, A2, and A3 hold. If G is known or
identified, then FU (U1,...,UK ) is identified.

Lewbel (BC) nonlinear random coeffi cients 2016 16 / 47



Proof sketch for K = 2. Define the identified term

λt =
∫
X∈supp(X ) E [h (Y , t) | X1,X2]X

t1−1
1 X t2−12 dX1dX2 =∫

X∈supp(X )
∫
U∈supp(U ) h (G (X1U1,X2U2) , t) dF (U1,U2)X

t1−1
1 X t2−12 dX1dX2∫

U∈supp(U )
∫
X∈supp(X ) h (G (X1U1,X2U2) , t)X

t1−1
1 X t2−12 dX1dX2dF (U1,U2)

Change variables on the inner integral, letting sk = XkUk :∫
U∈supp(U )

∫
s∈supp(X1U1,X2U2 |U ) h (G (s1, s2) , t) s

t1−1
1 st2−12 U−t11 U−t22 ds1ds2dF (U1,U2)∫

U∈supp(U )
∫
s∈supp(X ) h (G (s1, s2) , t) s

t1−1
1 st2−12 ds1ds2U

−t1
1 U−t22 dF (U1,U2)∫

U∈supp(U ) κtU
−t1
1 U−t22 dF (U1,U2) = κtE

(
U−t11 U−t22

)
So E

(
U−t11 U−t22

)
= λt/κt identifies the moments of

(
U−11 ,U−12

)
, which

by existence of MGF identifies FU (U1,U2).
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EXTENSION 1: Satisfying Assumption A3 when some elements of t equal
zero is diffi cult. Can instead partition X into two subvectors XP and X−P ,
and apply theorem conditioning on X−P = 0 instead of integrating over
X−P .

Example: With X = (X1,X2) let X2 = 0 to get E
(
U−t11

)
= λPt/κPt

EXTENSION 2: Replace h (Y , t) with hj (Y , t) for different hj functions.

Let µt = E
(
U−t11 U−t22 ...U−tK2

)
. For each t (including partition P) and

each j , will now get
λPtj/κPtj = µt

Can apply with multiple j to get multiple expressions for µt .
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EXTENSION 3: Unknown parameter vector θ. Model is now:

Y = G (X1U1, ...,XKUK , θ)

for known G , unknown vector θ.

Given a vector t ∈ T , partition P ∈ P , and function hj for j ∈ J, construct

λPtj =
∫
xP∈supp(X P )

E
[
hj (Y ) | XP = xP ,X−P = 0, t

]
x t1−11 x t2−12 ...x

tKP−1
K P dx1dx2...dxK P

κPtj (θ) =
∫
sP∈supp(X P )

hj
(
GP
(
sP , θ

)
, t
)

st1−11 st2−12 ...s
tKP−1
K P ds1ds2...dsK P

By Theorem
λPtj1

κPtj1 (θ)
= E

(
U−t11 U−t22 ...U−tK2

)
right side only depends on FU (U) and t, not on θ.
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Have
λPtj1

κPtj1 (θ)
= E

(
U−t11 U−t22 ...U−tK2

)
Therefore, available equations for identifying θ include:

1.
λPtj1

κPtj1 (θ)
=

λPtj2
κPtj2 (θ)

for all P ∈ P , t ∈ T , j1 ∈ J, and j2 ∈ J

2. κPtj (θ)

(
∂λPtj

∂j

)
=

(
∂κPtj (θ)

∂j

)
λPtj for all P ∈ P , t ∈ T , and j ∈ J

3. λP0j = κP0j (θ) for all P ∈ P and j ∈ J. Here t = 0.
First use any combination of these to identify θ, then apply Theorem 1 to
identify FU .
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Notes on Possible Estimators

1. Construct κPtj (θ) for each choice of j , P, t.
2. Replace E

[
hj (Y ) | XP = xP ,X−P = 0, t

]
with nonparametric

regression in λPtj to get λ̂Ptj .
3. Use minimum distance estimate θ, e.g.,

θ̂ = argmin ∑
P∈P ,t∈T

∑
j1∈J

∑
j2∈J

[(
λ̂Ptj1/κPtj1 (θ)

)
−
(

λ̂Ptj2/κPtj2 (θ)
)]2

4. Given θ̂, estimate random coeffi cient moments µt of the U distribution
for each t ∈ T using

µ̂t = ∑
j∈J
wjt λ̂jt/κjt

(
θ̂
)

with weights wjt chosen such that ∑j∈J wj .

These are essentially semiparametric two step estimators with
nonparametric first step.
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Alternatives: If partitions of X are not needed, can rewrite the λPtj
equation as

λPtj = E

(
hj (Y , t) x

t1−1
1 x t2−12 ...x tK−1K

fx (X )

)
So the integral of a nonparametric regression can be replaced by
estimation of the density of X , fx (X ), and a simple average.

If the density of X is finitely parameterized, and we only want a finite
number of moments µt of the U distribution, then all of the estimation
steps can be combined into an ordinary GMM.

Alternative to all of the above might be sieve maximum likelihood.
Assume U is continuous, write the likelihood function for the model
Y = G (X1U1, ...,XKUK , θ) in terms of the density of U, and approximate
the density with basis functions (e.g. mixtures of normals or Hermite
polynomial expansions).
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Example

Y = g [θ1X1U1X2U2 + θ2 ln (X2U2) + θ3X1U1 + θ4]

To satisfy assumptions, assume g is known and monotonic,
supp (X ) = RK

+, supp (U) ⊆ RK
+, and θ1 > 0.

Wlog, can choose scale normalizations for U1 and U2 to make θ3 = 1 and
θ4 = 0.

Goal: identify θ1, θ2 and joint distribution of U1 and U2.

For this application, a convenient hj (one that yields simple expressions for
θ) is

hj (y) = h̃j
(
g−1 (Y )

)
=

exp
(
−jg−1 (y)

)
(exp (−jg−1 (y)) + 1)2 /j

.

here h̃j is the logistic pdf, evaluated at the inverse of the g function.
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Model: Y = g [θ1X1U1X2U2 + θ2 ln (X2U2) + X1U1]

First identify θ2. Choose P where X1 = 0 so t1 drops out and XP = (X2).
Let t2 = 0. This gives

λP0j =
∫ ∞

0
E [hj (Y ) | X1 = 0,X2 = x2] x−12 dx2 corresponding to

κP0j (θ) =
∫ ∞

0
hj [g (θ2 ln s2)] s−12 ds2 =

∫ ∞

0

j exp (jθ2 ln s2)

(exp (jθ2 ln s2) + 1)
2 s
−1
2 ds2

Do the change of variables q = θ2 ln s2. Then

κP0j (θ) =
∫ ∞

−∞

je−jq

(e−jq + 1)2
1
θ2
dq =

1
θ2

Now λP0j = κP0j (θ) = 1/θ2 so identified by θ2 = 1/λP0j .
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Model: Y = g [θ1X1U1X2U2 + θ2 ln (X2U2) + X1U1]

Next identify θ1. Now use partition XP = X , and let t1 = t2 = 1. This
gives

λPtj =
∫ ∞

0

∫ ∞

0
E [hj (Y ) | X1 = x1,X2 = x2] dx1dx2 and

κPtj (θ) =
∫ ∞

0

∫ ∞

0
h̃j [(s1 + θ1s1s2 + θ2 ln s2)] ds1ds2

Now do change in variables replace s1 with r = s1 + θ1s1s2 + θ2 ln s2 to get

κjt (θ) =
∫ ∞

0

exp (−jθ2 ln s2)
1+ exp (−jθ2 ln s2)

1
(1+ s2θ1)

ds2

Let j = 1/θ2 to get

κjt (θ) =
ln (θ1)
θ1 − 1

and
∂κj1t (θ)

∂j
= − θ2

2

(
ln (θ1)
θ1 − 1

)2
Plugging into κPtj (θ) (∂λPtj/∂j)− (∂κPtj (θ) /∂j) λPtj , can uniquely solve
for θ1.
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Additive Model Identification

Additive Model: Y = c +∑K
k=1 Gk (XkUk )

Both the joint distribution of random coeffi cients FU (U) and the Gk
functions are unknown, need to be nonparametrically identified.

Maintain assumptions A1, A2 and A3. Recall Gk (sk ) ≥ ck sk suffi ces for
A3.

ASSUMPTION A4: U and X are continuously distributed. Each Gk is
strictly monotonically increasing, wlog normalize Gk (0) = 0, Gk (1) = 1.
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Extensions

1. Y = G (X1U1, ...,XKUK , θ) + U0 = Ỹ + U0 for unobserved Ỹ
Assume U0 independent of U1,...,UK , and U0 has nonvanishing
characteristic function. WLOG let G (0) = 0.
FY |X (y | 0) = FU0 (y) identifies FU0 . Deconvolution of Y |X with U0
identifies FỸ |X . Can then proceed as before.

2. Discrete choice. Assume for unobserved Y :
D = I [Y − V ≥ 0] = I [G (X1U1, ...,XKUK )− V + U0 ≥ 0]
V is a special regressor (Lewbel 1998, 2000, 2015): linear, continuous,
large support, independent of U. E (1−D | V ,X ) = FY |X (V | X )
identifies FY |X . Can then proceed as before.

3. Can replace FU (U) with FU (U | Z ), let all assumptions hold
conditional on covariates Z , observable characteristics. Allows for
observable preference heterogeneity and/or control function type
endogeneity.

Lewbel (BC) nonlinear random coeffi cients 2016 27 / 47



Barten Scales

Utility function S (Q1/U1, ...,QJ/UJ )
Q1, ...,QJ are quantities of goods consumed
U1, ...,UJ are Barten (1964) scales, reference values one.

Example: A couple rides together in their car 50% of the time. For
quantity of gasoline Qj , they get utility as if the quantity bought was
Qj ∗ 1.5 = Qj/Uj where Barten scale Uj = 2/3.

If they did not share car at all, would have Uj = 1/2. If they shared all the
time Uj = 1.

Barten scales can also reflect preference heterogeneity. If I need to eat
more than you to get the same utility from j = food, then I have a larger
value of Uj in my utility function you have in yours.
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Barten Scales

Let W ∗j = QjPj/M be the good j budget share and Xj = Pj/M. If max
utility function S (Q1/U1, ...,QJ/UJ ) given ∑J

j=1 QjPj = M, get
Marshallian demands (in budget share form):

W ∗j = ωj (U1X1, ...,UJXJ ) for each good j .

Traditional Barten scales: Uj = α (Z , θ), Z are observable household
characteristics (age, family size, etc.), estimate parameters θ.

This paper’s Barten scales: Uj are random utility parameters, reflecting
unobserved preference heterogeneity. Each Uj has a conditional pdf
= fj (Uj | Z ).

The functional form of ωj (X1, ...,XJ ) depends only on the functional form
of S (Q1, ...,QJ ), so U1, ...,UJ can vary independently of X1, ...,XJ .
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Empirical Demand Model Specification

Since identified, could consider nonparametric sieve estimation.

Due to sample size and curse of dimensionality, will instead do MLE with
’sieve inspired’model specification.

Specify indirect utility V−1 = h1(U1X1) + h2(U2X2) where

hk (Xk ) =
∫
lnXk

(
βk0 + βk1e

r + βk2e
2r + ...+ βkS e

Sr
)2
dr

Yielding Marshallian budget shares proportional to polynomials. Almost all
standard demand models are proportional to polynomials. See, e.g.,
Lewbel (2008) and references therein.
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Empirical Barten Scale Specification

Include observable taste shifters Z . Could identify nonparametric
FU (U | Z ), but to reduce dimensionality, let Uk = αk (Z ) Ũk where
αk (Z ) = exp

(
θ′1kZ + Z

′θ2kZ
)
is a traditional deterministic Barten scale.

Remaining unobserved random component of the Barten scales
Ũ =

(
Ũ1, Ũ2

)
is specified as (trimmed) bivariate log normal density

fln Ũ

(
Ũ1, Ũ2, σ, ρ

)
=

exp

(
ln Ũ1

σ1

)2
−2ρ

(
ln Ũ2

σ2

)(
ln Ũ1

σ1

)
+

(
ln Ũ2

σ2

)2
−2(1−ρ2)


2πσ1σ2 (1− ρ2)1/2 I .

The density is trimmed at I = ±3σ, since Theorem 2 needs MGF.

Density f0 of error U0 is mean zero normal with variance σ20.
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Estimator

We later also consider hermite polynomial sieve expansion densities for the
unobservables.

Assuming n iid households the resulting likelihood function is

∑n
i=1 ln fW1 |X1,X2,Z (w1i | x1i , x2i , zi ; α, β) .

where in Model 1 (standard deterministic Barten, ũ = 1)

fW1 |X1,X2,Z (w1 | x1, x2, z ; α, β)

= exp

−1
2σ20

λ (W1)− ln

(β10 +∑S
s=1 β1s (α1 (z) x1)

s

1+∑S
s=1 β2s (α2 (z) x2)

s

)22
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While in Model 2 (random Barten scales, ũ density fln Ũ is trimmed log
normal) the likelihood function is

∑n
i=1 ln fW1 |X1,X2,Z (w1i | x1i , x2i , zi ; α, β, σ, ρ) .

where

fW1 |X1,X2,Z (w1 | x1, x2, z ; α, β, σ, ρ)

=
∫ ∞

−∞

∫ ∞

−∞

fln Ũ (ũ1, ũ2, σ, ρ)

(2π)1/2 σ0

exp

−1
2σ20

λ (W1)− ln

(β10 +∑S
s=1 β1s (ũ1α1 (z) x1)

s

1+∑S
s=1 β2s (ũ2α2 (z) x2)

s

)22
d ln ũ1d ln ũ2

Note numerical integration over the Ũ1, Ũ2 distribution.
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Data

1997 to 2008 Canadian Survey of Household Spending, urban working age
singles, trimmed.

M = total nondurable expenditures: sum of household spending on food,
clothing, health care, alcohol and tobacco, public transportation, private
transportation operation, and personal care, plus the energy goods fuel oil,
electricity, natural gas and gasoline.

W1 = energy share of total nondurable expenditures. P1 and P2 are
household specific within group budget share weighted Stone Indices of
energy and non-energy goods, respectively, normalised to 1 in Ontario in
2002.

Z = characteristics: dummy for female; age (by 5 year age groups);
calendar year; dummy for in Quebec; Number of days requiring heating
and cooling in each province in each year (normalized as z-scores); dummy
for renter; dummy for more than 10% of gross income from government
transfers.
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Data - continued

Table 1: Summary Statistics
9971 Observations mean std dev min max
logit energy share, Y -1.949 0.766 -7.140 1.005
energy share, W 0.146 0.085 0.001 0.732
nondurable expenditure, M 15.661 7.104 2.064 41.245
energy price, P1 1.039 0.230 0.426 1.896
non-energy price, P2 0.965 0.075 0.755 1.284
female indicator 0.482 0.500 0.000 1.000
age group-4 0.549 2.262 -3.000 4.000
year-2002 0.363 3.339 -5.000 6.000
Quebec resident 0.168 0.374 0.000 1.000
heat days, normalized -0.102 0.990 -2.507 2.253
cooling days, normalized 0.014 1.007 -1.729 4.013
renter indicator 0.512 0.500 0.000 1.000
transfer income indicator 0.184 0.387 0.000 1.000
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Empirical Example - Energy Demand Estimates

S = 3 third order polynomial in each lnXj . Model 1 deterministic Barten,
Model 2 random Barten. Model 2 has generally smaller standard errors,
roughly analogous to how generalized least squares lowers standard errors
by modeling the heteroskedasticity.

Table 2: Estimated Parameters - part 1
Model 1 Model 2
llf=−10043.1 llf=−9706.9

Parameter Estimate Std Err Estimate Std Err
β10 0.145 0.010 0.185 0.007
β11 8.113 0.487 7.623 0.287
β12 -37.563 2.924 -32.871 2.147
β13 51.576 5.650 40.630 4.390
β21 2.484 0.568 1.805 0.266
β22 -1.743 0.663 1.053 0.314
β23 0.152 0.141 -0.996 0.139
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Table 2: Estimated Parameters - part 2
Model 1 Model 2

Parameter Estimate Std Err Estimate Std Err
α1 female -0.214 0.031 -0.228 0.015

agegp 0.002 0.009 0.013 0.004
time -0.013 0.004 -0.003 0.002
PQ 0.085 0.043 0.043 0.021
heat 0.036 0.016 0.026 0.008
cool -0.062 0.015 -0.035 0.007
renter -0.292 0.058 -0.440 0.026
social 0.034 0.038 0.054 0.020

α2 female -0.130 0.076 -0.117 0.010
agegp -0.068 0.023 -0.038 0.002
time 0.018 0.010 0.044 0.001
PQ 0.402 0.100 0.217 0.017
heat 0.015 0.040 -0.021 0.008
cool -0.077 0.043 -0.014 0.006
renter 0.943 0.155 0.605 0.008
social -0.085 0.091 -0.110 0.011

Lewbel (BC) nonlinear random coeffi cients 2016 37 / 47



Barten summary terms. Note ln αj (z) is deterministic component, σj is
standard deviation of random component Ũj , lnUj = ln Ũj + ln αj (z).

Table 2: Estimated Parameters - part 3
Model 1 Model 2

σ0 0.663 0.005 0.469 0.009
σ1 0.165 0.036
σ2 1.336 0.011

ρ 0.883 0.100
std dev ln(α1) 0.197 0.252

ln(α2) 0.568 0.380
correlation ln(α1), ln(α2) -0.479 -0.700
(all obs) lnU1, lnU2 0.293

correlation ln(α1), ln(α2) 0.426 0.105
(renter=0) lnU1, lnU2 0.699
correlation ln(α1), ln(α2) 0.420 0.087
(renter=1) lnU1, lnU2 0.691
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Log Barten Scale Distributions

Next two slides show contour plots of estimated joint density of log Barten
Scales.

First is Model 1 Joint density of ln α1 (Z ), ln α2 (Z ). These are traditional
deterministic log Barten scales.

Second is Model 2 Joint density of our random Barten scales lnU1, lnU2
where, lnUj = ln αj (z) + ln Ũj .

Two modes correspond to separate mean energy expenditures of renters vs
owners.

In Model 2, after controlling for renter vs owners, var (lnU2) is a little
higher than var (lnU1), correlation about 0.7
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Budget Shares - Engel Curves

Engel curve: energy budget share W1 as a function of log total
expenditures, lnM, evaluated at P1 = P2 = 1, at quartiles of the
distributions of U1, U2. For comparison, model 1 is gray line and model 2
without random Ũ1 and Ũ2 is thick black line.

Density of lnM also shown; upward sloping portion of Engel curves are
only in the lower tail of lnM distribution.
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Price effects, Consumer Surplus

We have a closed form expression for indirect utility. Therefore can
compute cost of living consumer surplus without Vartia (1984) type
approximations. Would otherwise need a numeric differential equation
solution for every value U1, U2 can take on.

To show price effects clearly, consider a large price change: a 50% increase
in the price of energy at P1 = P2 = 1 (approximating the effect of a $300
per ton CO2 tax,see, e.g., Rhodes and Jaccard 2014). The cost-of-living
impact, π (U1,U2,M) is defined as the solution to

V
(
U1P1
M

,
U2P2
M

)
= V

(
1.5U1P1

πM
,
U2P2
πM

)
.

Next slide shows joint density (contour plot) of π and lnM, variation from
U1,U2. W 1 = 0.146, so 50% energy tax without substitution effects
would increase costs by 7.3%. Most mass is below .073 horizontal line
from substitution effects. Low M households have higher mean and
variance of harm.
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Table 4: Cost of Living Impacts: 50% Energy Price Increase
Per Cent Increase Model 1 Model 2

π − 1, per cent Estimate Std Err Estimate Std Err
αj = αj , Ũj = 1 Mean 5.34 0.22 5.66 0.17

Std Dev 1.26 0.06 1.30 0.05
αj , Ũj = 1 Mean 5.31 0.24 5.64 0.17

Std Dev 1.85 0.21 1.69 0.08
αj , Ũj Mean 5.37 0.20

Std Dev 4.31 0.46

If had no substitution effects the mean effect above would be 7.3%.

Comparing first 2 and second 2 rows shows allowing for observed
heterogeneity in U has little effect on COLI π − 1.

Comparing models 1 and 2 shows allowing for unobserved heterogeneity in
U has little effect on mean COLI but more than doubles(!) its standard
deviation, from 1.85 to 4.31. As previous graph shows, wider variation
particularly impacts the poor.
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Conclusions

Have shown identification of generalized random coeffi cients models.

Y = G (X1U1, ...,XKUK , θ) + U0

Potential applications:
Production functions with unobserved qualities Uk of inputs Xk
Discrete choice and BLP type models without artificial restriction of
linearity in covariates
Polynomial instead of linear random coeffi cients.

Empirical application: Extend existing observed heterogeneity in demand
model (Barten scales) to unobserved heterogeneity - highly relevant for
distribution of welfare effects of an energy tax.

Ongoing work: Estimation asymptotics, characterizations of feasible g
functions, multiple equation systems.
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