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1. Introduction: Large Administrative Health Data
Readily Available

I Canadian Provincial Medical Insurance Databases

I Canada Health Care System:
universally accessible,
government-sponsored

– Thomas C. (Tommy) Douglas
was voted “the greatest
Canadian of all time”

I Canadian Disease/Patient Registries: e.g. BC Cancer Registry
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1. Introduction: to Address Public Health Issues
with Such Data

McBride et al (2010) on Cancer Survivorship

I The cancer survivor population has been increasing rapidly due to
improvements in cancer treatments.

I These survivors are often at risk of subsequent and ongoing
problems that are mainly treatment related.

I The evaluation/development of strategies for long-term
management requires risk assessment, particularly for those
diagnosed at a young age, e.g. at age 0 to 19.

To address the survivorship issues,

the Childhood, Adolescent, Young Adult

Cancer Survivorship (CAYACS)

research program uses population-based

data (Registry+MSP):

e.g. physician claims of the survivors.
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1. Introduction: CAYACS Physician Claims Study

CAYACS Data Extraction

I CAYACS survivor cohort: diagnosed 1981-1999, under the
age of 20, in BC and having survived ≥ 5 yrs

I information from Cancer Registry (a total of 1962)
I physician claims from MSP (Medical Services Plan), starting

from 5 yrs after diagnosis till 2006

I CAYACS general population sample: selected from BC
general population to match in sex and birth year, 10 times
the size of survivor cohort.

I physician claims from MSP
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I Objectives of the CAYACS’s physician claims project:

I to evaluate the cohort’s physician visit frequency and medical
cost

I to identify factors of risk to later effects
I to compare it with the general population

I Results from CAYACS’s previous analysis: 3-year visit
counts: (McBride et al, 2011)
Regarding medical care demand:

I cancer survivors > general population
survivors often suffered the consequences of the original cancer
diagnoses – mostly treatment-related (later effects)

I females > males within survivors
Is gender a risk factor?
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Yearly Data Comparison: Survivor vs General

Means of Yearly Visit Counts Means of Yearly Medical Costs



Yearly Data Comparison: survivor with RSC
vs. survivor vs. general

Means of Yearly Visit Counts Means of Yearly Medical Costs
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1. Introduction: CAYACS Physician Claims Study

The class membership (η = 1 or 0) is not observable.
=⇒ to consider a latent class model
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Difficulties in Analysis under Latent Class Models

I Increased number of parameters → low efficiency

I Underlying probability model specification for each latent
class: since no available information directly on η, and thus on
Y |η → lack of robustness to distribution assumptions

Additional Information

I Supplementary Information: general population (about η = 0
group?)

I Partially observed at-risk class (η = 1): a total of 168
survivors with relapse/2nd cancer (δ = 1)
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1. Introduction: Statistical Modelling

Model Specification

Risk model

P(η = 1|Z) = p(Z;α)

Regression models for each class

E (Y|η = 1,Z) = µ1(Z;β)

E (Y|η = 0,Z) = µ0(Z; θ)

e.g. logit{p(Z;α)} = α
′
Z

e.g. l{µ1(Z;β)} = β
′
Z

e.g. l{µ0(Z; θ)} = θ
′
Z

X. Joan Hu:
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1. Introduction: Statistical Problem
Estimation of (α, β,θ) based on data from the survivor cohort
combined with the sample from the general population

Why bother? Examples for its use:

I by p(Z;α), risk factor identification; risk probability estimation

I by µ1(Z;β), visit patterns in “at-risk” class

I by µ0(Z; θ), visit patterns in “not-at-risk” class

I to conduct risk classification/prediction in the survivor cohort

How? Procedures:

I Likelihood-Based Estimation with Cross-Sectional Counts under
Mixture Poisson Models (Wang et al, 2014)

I Extended GEE Procedures with Longitudinal Data

X. Joan Hu:
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2. Likelihood-Based Estimation with Cross-Sectional
Counts: Model Assumption

Y = Y cross-sectional visit count over (0,T ] with T the follow up
time.

Mixture Poisson Model

[Y |Z;α, β, θ]

= [Y |η = 0,Z; θ][η = 0|Z;α] + [Y |η = 1,Z;β][η = 1|Z;α]

I Y |η = 1,Z ∼ Poisson
(
µ1(Z;β)

)
I Y |η = 0,Z ∼ Poisson

(
µ0(Z; θ)

)
I η = 1|Z ∼ logistic regression model

X. Joan Hu:
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2. Likelihood-Based Estimation with Cross-Sectional
Counts: Procedures

I Maximum Likelihood Estimation (MLE) Likelihood
function based on the data from CAYACS cohort
L(α, β, θ; DataP) ∝

∏
i∈P

[Yi |Zi ;α, β, θ]

I EM algorithm via the “full-data” likelihood based on [Yi , ηi |Zi ]
I computationally intense

I Pseudo-MLE With rich information on θ from the general
population, likelihood function:

L(α, β, θ; DataP ,DataQ) ∝
∏
i∈P

[Yi |Zi ;α, β, θ]
∏
i∈Q

[Yi |ηi = 0,Zi ; θ]

Type AB pseudo MLE.
I θ̂ from

∏
i∈Q

[Yi |ηi = 0,Zi ; θ]

I (α̂, β̂) from
∏
i∈P

[Yi |Zi ;α, β, θ̂]
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2. Likelihood-Based Estimation with Cross-Sectional
Counts: Properties

I Consistency and asymptotic normality

I MLE vs the Pseudo-MLE: efficiency?

I Extended Huber sandwich variance estimator: e.g. account for
θ̂ estimated from Q

However,

I Simulation results show that likelihood-based estimators were
biased under distribution misspecification, especially for α

I CAYACS physician visit counts are highly overdispersed. Plus
physician claims include costs and are longitudinal.

=⇒ to adapt the GEE approach

X. Joan Hu:

Latent Class Model
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3. Extended GEE Procedures with Longitudinal
Data: Modelling

Consider the Mean-Variance Models:

E (Y |Z) = p(Z;α)µ1(Z;β) + {1− p(Z;α)}µ0(Z; θ) ≡ Λ

V (Y |Z) = p(Z;α)Σ1 + {1− p(Z;α)}Σ0

+ p(Z;α){1− p(Z;α)}{µ1(Z;β)− µ0(Z; θ)}2 ≡ Σ

Directly applying the GEE approach:

n∑
i=1

∂Λi (α, β, θ)

∂(α, β, θ)
Σ−1
i [Yi − Λi (α, β, θ)] = 0

the evaluations of the estimator for (α, β, θ)?

X. Joan Hu:
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3. Extended GEE Procedures with Longitudinal
Data: Procedure

I Using the information from the general population to set the
standard for “not-at-risk”, the group of η = 0:∑

i∈Q

∂µ0(Zi ; θ)

∂θ
Σ−1

0i [Yi − µ0(Zi ; θ)] = 0

I Using the information from the sub-cohort of subjects with
relapse/2nd cancer to set the standard for “at-risk”, the group of
η = 1: ∑

i :δi=1

∂µ1(Zi ;β)

∂β
Σ−1

1i [Yi − µ1(Zi ;β)] = 0

I Pulling the information together to obtain an estimator of α:∑
i∈P

∂Λi (α, β, θ)

∂α
Σ−1

i [Yi − Λi (α, β, θ)] = 0

=⇒ extended GEE estimator with consistency and asymptotic
normality: how is it compared with MLE?
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3. Extended GEE Procedures with Longitudinal
Data: Implementing with CAYACS Data

responses Yi → Yij : j = 1, . . . , Ji , Ji ∈ [1, 20]
yearly visit counts/log-trans costs

potential risk factors sex: male vs female

age at study entry: 5 years after
diag

SES: socioeconomic status, high vs
low

diagnosis period: 1990s vs 1980s

cancer treatment: chemotherapy no
radiation, radiation no chemotherapy,
both vs others

X. Joan Hu:

Latent Class Model



Table 3.1. LCM Analysis: intercept, sex,

age at entry – effect time-varying;

compound symmetric corr
counts costs

Factor estimate sw.se estimate sw.se

α estimates in the Risk Model

intercept 0.179 (0.435) 0.196 (0.314)

male (vs female) -0.329 (0.341) -0.286 (0.247)

SES high (vs low) 0.365 (0.342) 0.280 (0.248)

age at diagnosis 0.097 (0.590) -0.302 (0.389)

diag in 90s (vs 80s) -1.347 (0.283) 0.017 (0.178)

treatment (vs other)

chemo no rad 0.474 (0.246) 0.269 (0.181)

rad no chemo 1.524 (0.525) 1.729 (0.509)

both 1.463 (0.413) 0.946 (0.241)

β estimates in the Regression Model for the “at-risk” class

GEE estimates based on δ = 1 subgroup

intercept 2.360b (0.128)c 5.664b (0.232)c

male (vs female) -0.293b (0.124)c -0.421b (0.201)c

SES high (vs low) -0.078 (0.111) -0.094 (0.159)

age at study entry 0.070b (0.186)c -0.071b (0.287)c

dispersion/scale parameter 10.59 (1.302) 2.641b (0.224)c

correlation parameter 0.331 (0.042) 0.401 (0.048)

θ estimates in the Regression Model for the “not-at-risk” class

GEE estimates based on general population

intercept 1.537b (0.036)c 4.324b (0.032)c

male (vs female) -0.546b (0.040)c -0.697b (0.030)c

SES high (vs low) -0.062 (0.019) -0.049 (0.020)

age at study entry 0.399b (0.060)c 0.235b (0.047)c

dispersion/scale parameter 10.029 (0.537) 2.801b (0.025)c

correlation parameter 0.381 (0.013) 0.333 (0.005)
aSignificant Effect with P-value ≤ 0.05 in Boldface
b Average values over 20 estimates
b se of the 20 averaged estimate

Time-varying
coefficients:

(yearly costs)
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4. Application to Risk Classification and Prediction

Statistical Modelling II

To capture heterogeneity within individual ...

l
{

E
(
Yij

∣∣ηi = 1,Zij , bi
)}

= β
′
jZij + b

′
iXij

l
{

E
(
Yij

∣∣ηi = 0,Zij , ci
)}

= θ
′
jZij + c

′
iXij

Special cases:

(i) Xij = 1 =⇒ bi and ci are scalar (“random intercept”)

(ii) for cost =⇒ l{} = I ; for count =⇒ l{} = log

X. Joan Hu:

Latent Class Model
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Application A. Risk Classification by Yearly Costs Using

E (Yi |Zi , b̂i , ĉi )
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Application B. Risk Classification based on Estimated Risk
Probabilities

1. P̂(ηi = 1|Zi ) = p(Zi ; α̂)

2. P̂(ηi = 1|Yi ,Zi ; α̂, β̂, θ̂)

P(ηi = 1|Yi ,Zi ) =
[Yi |ηi = 1,Zi ]P(ηi = 1|Zi )

[Yi |ηi = 1,Zi ]P(ηi = 1|Zi ) + [Yi |ηi = 0,Zi ]P(ηi = 0|Zi )

3. P̂(ηi = 1|Yi ,Zi , b̂i , ĉi ; α̂, β̂, θ̂), b̂i , ĉi estimated by BLUP

P(ηi = 1|Yi ,Zi , bi , ci ) =
[Yi |ηi = 1,Zi , bi ]P(ηi = 1|Zi , bi , ci )

[Yi |ηi = 1,Zi , bi ]P(ηi = 1|Zi , bi , ci ) + [Yi |ηi = 0,Zi , ci ]P(ηi = 0|Zi , bi , ci )

(a) jointly model Y and η via b and c
(b) to approximate it by

[Yi |ηi = 1,Zi , bi ]P(ηi = 1|Yi ,Zi )

[Yi |ηi = 1,Zi , bi ]P(ηi = 1|Yi ,Zi ) + [Yi |ηi = 0,Zi , ci ]P(ηi = 0|Yi ,Zi )

X. Joan Hu:

Latent Class Model
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Histograms of estimated risk probabilities for full
survivor cohort and parametric bootstraps

P̂(ηi = 1|Zi ) P̂(ηi = 1|Yi ,Zi ) P̂(ηi = 1|Yi ,Zi , bi , ci )



Dynamic risk probabilities:
40 survivors diagnosed in 1981 and followed until 2006

P(η = 1|Z) 7→ P(η = 1|Z,Y5) 7→ P(η = 1|Z,Y10) 7→ P(η = 1|Z,Y15) 7→ P(η = 1|Z,Y20)



Dynamic risk probabilities:
40 survivors diagnosed in 1981 and followed until 2006, with
estimated means for the two classes
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