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Multi-Level Monte Carlo for SDEs

Stochastic differential equation (SDE)

dvi = Fi dt + Dij dWj , (11)

where f is probability density of v and i , j are component indices

W = W (t) is Brownian motion in velocity

dW is white noise in velocity

Objective is an average of f :

1

ρ

∫
P(v)f (v, t) dv ≡ E[P(v(t))] (12)
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Discretization of SDEs

Euler-Maruyama discretization in time:

vi ,n+1 = vi ,n + Fi ,n∆t + Dij ,n ∆Wj ,n, (13)

∆Wn = Wn+1 −Wn (14)

in which vi ,n = vi (tn) and Fn = F(vn)

Choose N Brownian paths to get N values of P(v(T ))

Average to approximate E[P(v(T ))]

Computational cost vs. Error ε:

Statistical error is O(N−1/2)

∆t error is O(∆t), since ∆W = O(
√

∆t) and random

Optimal choice is ε = N−1/2 = ∆t

Cost = N∆t−1 = ε−3
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MLMC Basics

Introduce time step levels, ∆t` = T2−`, for ` = 0, ..., L

7

Multilevel Schemes: How they work

1. Giles in “Monte Carlo and Quasi-Monte Carlo Method”, Springer-Verlag, (2006)

Parametric Integration

This can be repeated on multiple levels (perhaps using
higher order interpolation if f(x, λ) is sufficiently smooth)! !

! ! !
! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !!

"

"
λ

This doesn’t quite fit into the multilevel framework I’ve
described, but the complexity analysis is very similar.

Multilevel Monte Carlo – p. 10

Grid

Statistical error converges with 

Like multi-grid 
method.  

Convergent sum,
when using Milstein method

L ! 1

�tExpectations with       samplesNl

�t, NlMLMC scheme combines multiple solutions with varying 

v̂NL

L = E[v0] +

LX

l=1

E[(vl � vl�1)]

Let P` = P(v∆t`). Then

E[PL] = E[P0] +
L∑

`=1

E [P` − P`−1] (24)

When computed using same Brownian path, the variance of
(P` − P`−1) is O(strong error)2
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MLMC Scaling

Optimal number of samples used to compute each E[P` − P`−1],
constrained by RMSE < ε. The complexity now scales like11

Cost =

{
O
(
ε−2(log ε)2

)
for Euler-Maruyama

O
(
ε−2
)

for Milstein
(25)

Notes:

MLMC-Euler-Maruyama scales better than standard MC

MLMC-Milstein is even better

Restricted to d = 1, 2 due to difficulty with Levy areas

O
(
ε−2
)

scaling is possible without Milstein, using antithetic
sampling method 12

11Giles, Operations Research, 56(3):607, 2008
12Giles & Szpruch, arXiv:1202.6283, 2012
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A Sample Plasma Problem

10-5 10-4 10-3

ε

10-1

100

K
ε2

Direct

MLMC Euler

MLMC Milstein

∼(lnε)2

Rosin, Ricketson, et. al., submitted to JCP, 2013
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Background Hybrid Negative New Numerics

Hybrid DSMC for Plasmas

Vlasov-Poisson-Landau (VPL) system for non-equilibrium plasma
∂tf + v · ∇xf − E · ∇vf = QL(f , f ),

−∇x · E = ρ(t, x) =

∫
f (t, x, v) dv,

Landau-Fokker-Planck operator for Coulomb interactions is

QL(g, f )(v) =
A
4
∂

∂vi

∫
R3

uσtr(u)(u2δij − uiuj)

(
∂

∂vj
− ∂

∂wj

)
g(w)f (v) dw

u = v− u

σtr(u) ≈ u−3

A is proportional to Coulomb logarithm

Magnetic field omitted here

QL(g, f ) is asymmetric, and describes the change in f due to collisions
with g (used in negative particle section below)
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Background Hybrid Negative New Numerics

DSMC for Plasma Kinetics

The PIC-DSMC method is widely used in plasma simulation

Particle-In-Cell method (PIC) for collisionless plasma. Dawson 83,
Birdsall-Langdon 85

Direct Simulation Monte Carlo (DSMC) for binary collisions.
Takizuka-Abe 77, Nanbu 97, Bobylev-Nanbu 2000

In each time step of DSMC, perform collisions between Nc randomly chosen
pairs of particles

For rarefied gas (charge neutral, short range), Nc = O(∆tN).

Each particle collides at the physically correct rate.
Collisions are physical collisions

For Coulomb gas (charged, long range), Nc = N/2.

Every particle collides once in every time step
Collisions are aggregates depending on ∆t
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Background Hybrid Negative New Numerics

Hybrid Scheme

Combine fluid and particle simulation methods1:

Treat as fluid

Treat as particles

Separate f into Maxwellian and
non-Maxwellian (particle) components:
f = m + fp
Treat m as fluid
Simulate fp by Monte Carlo
Interaction of m and fp: sample particles
from m; collide with particles from fp
Similar to δf methods, but fully
nonlinear
Limited to fp ≥ 0

1Caflisch et. al, Multiscale Model. Simul. 2008
Russel Caflisch Accelerated Simulation for RGD & Plasma Kinetics 11/ 46



Background Hybrid Negative New Numerics

Motivation for Negative Particles

Apply decomposition

f (t, x, v) = M(t, x, v) + fd(t, x, v),

with fd(t, x, v) alowed to be positive or negative, so that fd is minimized.
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f
d

f = M + f
d

(fd)+ and (fd)− are represented by positive and negative deviational particles.
Developed here for LFP. Similar work for RGD.5

5Baker & Hadjiconstantinou, Phys Fl (2005)
Russel Caflisch Accelerated Simulation for RGD & Plasma Kinetics 18/ 46



Background Hybrid Negative New Numerics

Meaning of Negative Particles

A negative particle w− in fd cancels a (positive) particle w+

in m or fd
So a P− N collision (v+, w−) cancels a corresponding
P− P collision (v+, w+).

The P− P collision removes v+,w+ and adds v′+,w
′
+:

P-P: v+,w+ → v′+,w
′
+

So the P− N collision adds v+, removes w− (i.e., adds w+),
and adds v′−,w

′
− (i.e., removes v′+,w

′
+)

P-N: v+,w− → 2v+, v′−,w
′
−

Derived from the Boltzmann equation.7

7Baker & Hadjiconstantinou, Phys Fl (2005)
Russel Caflisch Accelerated Simulation for RGD & Plasma Kinetics 24/ 46

Particle number can grow!
New method controls this growth.



Background Hybrid Negative New Numerics

Nonlinear Landau Damping in VPL system
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Figure: The distribution in the x− v1 phase space at time t = 1.25 in
the nonlinear Landau damping problem of the VPL system.
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Background Hybrid Negative New Numerics

Efficiency Test on VPL System

ρ(t = 0, x) = 1 + α sin(x)
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HDP, α = 0.1
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PIC−DSMC, α = 0.001

HDP, α = 0.001

Figure: The efficiency test of the HDP method on the VPL system for
different α in the initial density.
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Los Alamos 

A very brief introduction 

Arthur F. Voter 
Theoretical Division 

Los Alamos National Laboratory 
Los Alamos, New Mexico  USA 

Work supported by  
DOE/BES 

Los Alamos LDRD program 
DOE/ASCR, DOE/SciDAC 

Accelerated Molecular Dynamics Methods 



Los Alamos 

Deposition event takes ~2 ps 
– use molecular dynamics (can reach ns)

Time to next deposition is ~1 s 
- diffusion events affect the film morphology
- mechanisms can be surprisingly complex
--> need another approach to treat these

Example: Film or Crystal Growth 



Los Alamos 

The system vibrates in 3-N dimensional basin many times before finding an 
escape path.   If we could afford to run molecular dynamics long enough 
(perhaps millions of vibrations), the trajectory would find an appropriate way 
out of the state.  It is interesting that the trajectory can do this without ever 
knowing about any of the other possible escape paths. 

Infrequent-Event System 



Los Alamos 

Hyperdynamics 

Parallel Replica Dynamics 

Temperature Accelerated Dynamics 

Accelerated Molecular Dynamics Methods 
Builds on transition state theory and 
importance sampling to hasten the 
escape from each state in a true 
dynamical way.  The boosted time is 
calculated as the simulation proceeds. 

 (AFV, J. Chem. Phys., 1997) 

Harnesses parallel power to boost 
the time scale.  Very simple and 
very general;  exact for any 
infrequent event system obeying 
exponential escape statistics. 
 (AFV, Phys. Rev. B, 1998) 

Raise T to make events happen more 
quickly.  Filter out events that should not 
have happened at correct T.  More 
approximate, but more powerful. 
 (M.R. Sorensen and AFV, J. Chem. Phys., 
  2000) 



Los AlamosRecent brief review:  Perez et al,  Ann. Rep. Comp. Chem. 5, 79 (2009). 

Wide range of systems can be studied 

Cu/Ag(100), 1 ML/25 s 
T=77K, Sprague et al, 2002. 

Interstitial defects in MgO, 
ps – s, Uberuaga et al, 2004. 

Annealing nanotube 
slices, µs, Uberuaga 
et al, 2011. 

Hexadecane pyrolysis,  
µs, Kum et al, 2004. 

Driven Cu GB 
sliding, 500 µm/s 
Mishin et al, 2007. Ag nanowire stretch, µs - ms, Perez et al, 

TBP. 

Cu void collapse to 
SFT, µs, Uberuaga 
et al, 2007. 
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Multiscale Finite Element Method
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• PDEs with multiscale solutions.
– Goal: obtain the large scale solutions, without resolving small scales.

Method: construct finite element base functions which capture the small scale
information within each element.

– Small scale information correctly influences large scales global stiffness
matrix.

– Base functions are constructed from the leading order homogeneous elliptic
equation in each element.

• Difficulty: resonance can lead to larger errors
– Resonance is between the small and large scales
– Solution: Choose BCs for the base function to cancel resonance errors
– Convergence independent of the small scales

Hou & Wu, JCP 134 (1997) 169-189 



Multiscale Finite Element Method 
(MFEM)
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• Steady flow in porous medium
– Pressure u from rapidly varying conductivity tensor a(x)

– Velocity field q is related to the pressure u through Darcy’s law:

– MFEM-L, MFEM-O refer to BC choices, MFEM-os refers to oversampling

( )a x u f−∇ ∇ =

q a u= − ∇
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In-Painting for 
Scientific Computation

• Image inpainting
• Extend image to region             where info is 

missing or corrupted
– TV inpainting model: given image u0 and region D,

inpainted image u minimizes

– T. Chan and J. Shen (2002)

BIRS 2016 
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D ⊂ Ω

( )2
0 0\

( | , )
D

V u u D u dx u u dxλ
Ω Ω

= ∇ + −∫ ∫



TV Impainting
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Chan, Shen (2005)



Impainting of Texture
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Bertalmio, Vese, Sapiro, Osher (2003)



In-Painting for Plasma Computations

• Doesn’t work well for continuation of PDE solution
• Jenko, Osher, Zhu

BIRS 2016 
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Split Bregman
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• An optimization method for compressed sensing and related fields

– Norms are L1 and L2, respectively.
– Difficulty: L1 term isn’t smooth

• Relax the first term by

2

2

( )

( )

u u

H u Au fµ

Φ =

= −
1

min ( ) ( )u u H uΦ +

2
, 1 2

min ( ) ( )u d d H u d uλ+ + −Φ



Split Bregman
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• Starting from

• Improve iteration by “feeding back the noise”  through term b:

• Split the first line into two pieces to get split Bregman

– Easily solved: u problem is smooth, d problem is soft-thresholding
– Widely used for problems involving sparsity

2
, 1 2

min ( ) ( )u d d H u d uλ+ + −Φ

21 1
, 1 2

1 1 1

( , ) arg min ( ) ( )

( )

k k k
u d

k k k k

u d d H u d u b

b b u d

λ+ +

+ + +

= + + −Φ −

= +Φ −

21

2
21 1

1 2
1 1 1

arg min ( ) ( )

arg min ( )

( )

k k k
u

k k k
d

k k k k

u H u d u b

d d d u b

b b u d

λ

λ

+

+ +

+ + +

= + −Φ −

= + −Φ −

= +Φ −



Split Bregman Results
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• Convergence results

• Reconstruction results
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Empirical Mode Decomposition (EMD)
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• Adaptive data analysis method
– Determine trend and instantaneous frequency of time series f(t)
– Find sparsest representation of f(t) within a dictionary of intrinsic mode

functions (IMFs)

• Dictionary construction

• Smoothness measured through TV3 norm
3 (4)( ) ( )TV a a t dt= ∫

{ }( ) cos ( ) : '( ) 0, ( ) cos ( )D a t t t a t smoother than tθ θ θ= ≥

1
min . . ( ) ( ) cos ( ), cos

M

k k k k
k

M s t f t a t t a Dθ θ
=

= ∈∑

Huang, Proc Roy Soc, 1989
Hou & Shi, Adv Adaptive Data Anal, 2011



Empirical Mode Decomposition
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• Example

• IMFs captured almost exactly
• Frequencies captured very well

( ) ( )( ) 6 cos 8 0.5cos 40f t t t tπ π= + +
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Stochastic Gradient Descent
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• Optimization for functions of the form

– Widely used for machine learning and internet computations

– Each i represents piece of data used for training of a learning method

• Randomly choose data for ith step
– Perform gradient descent with step size η

• Many variants
– Series of batches with η constant within batch, decreasing between batches

1
( ) ( )

n

i
i

Q w Q w
=

=∑

: ( )iw w Q wη= − ∇

Wikipedia



Stochastic Gradient Descent
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• Convergence of mini-batch method


	�Recent Innovative �Numerical Methods�
	Overview�
	Multiscale Finite Element Method�
	Multiscale Finite Element Method (MFEM)�
	In-Painting for �Scientific Computation
	TV Impainting
	Impainting of Texture
	In-Painting for Plasma Computations
	Split Bregman
	Split Bregman
	Split Bregman Results
	Empirical Mode Decomposition (EMD)
	Empirical Mode Decomposition
	Stochastic Gradient Descent
	Stochastic Gradient Descent
	HybridMC.pdf
	Background
	Hybrid
	Negative 
	A new negative particle method
	Numerical simulation




