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2  D materials
●        Class of materials merely a few atoms thick

●  /  Exhibit exotic novel properties

Graphene

sp2 hybridized single atom thick C 
sheet

Hexagonal boron-nitride Fluorographene
Graphene Family

Transition metal dichalcogenides family

Fluorine saturated graphenesp2 hybridized B-N in graphene 
structure

MoS2, WS2, MoSe2, WSe2 : 3   atomic layers thick

 ,     Except graphene all above materials are
/semiconducting insulating

   , ,Applications in solar cells transistors

semiconductors



  

 Layered structures

Calman et. al. APL 108, 101901 (2016)

2  D layers
  as Lego blocks

. .  ( :10.1038/ 12385)A K Geim doi nature

 Build designer
heterostructures

 by stacking

       !Unusual properties and new phenomena can be explored

  :    weak interplanar bonding van der Waals heterostructures

●     Clean and atomically sharp interfaces

●  Lattice mismatch

●   Rotations between layers

●  Stacking order

Semi-metal

insulator

Semi-conductor

insulator

Semi-conductor



  

   Applications and interesting phenomena
:  Excitons Photovoltaic device

.  L Britnell  et al ( . . ), K S Novoselov
 340, 1311 (2013)Science

 :  Moire patterns rotated layers

● -   Ultra thin and fexible

● 30%   quantum efciency

Bilayer graphene

Yan et. al. PRL 109,
126801 (2012) 

●   Fermi velocity
renormalization

●   Van Hove singularities

●   Commensurate to
 incommensurate

transition



  

    Diferent structures due to layering
●  Stacking sequences  : , , , ...between layers AA AB ABC

  Rotation of layers

  - -T G Mendes de Sa  ,et al   23, 475602 (2012)Nanotechnology

Fluorographene
-MoS2 bilayer

-   Lin Feng Wang  et al,  25, 385701 (2014)Nanotechnology

●  Incommensurate layers

   DFT simulations of /  incommensurate rotated layers

 need     .large and expensive supercell calcs

a1
a2 :  Incommensurate irrational number

   :  Commensurate rational number

=

bilayer
graphene

  Can we circumvent
  ?full DFT calculations



  

   .  ?What in DFT calcs is expensive

● ΔV12     required to get exact solution

➔    .Needs full DFT calcs

➔    /  Expensive for incommensurate rotated
structures

●   : Weakly interacting layers   !Apply perturbation theory

–  / -   Approximate self consistently determine ΔV12

– V2 + ΔV12     acts as perturbation on  1layer  &  vice versa

 V
1 
: Potential Layer 1

 V
2 
: Potential Layer 2 

Widely separatedinteraction
ΔV12= 0

Vtot = V1 + V2 + ΔV12 

Vtot = V1 + V2 

Bilayer

3.34 Å

   No full DFT
.  calcs on

!supercell



  

Model
●     ( / )Holds for fnite systems commensurate incommensurate

●    =     Wavefunction total system Linear combination of individual layers

●   Solve the   generalized eigenvalue problem

  (  )  .  isolated layer unit cell DFT calcs are performed

     What is the form of ΔV12 ?

H12 interlayer

H12 interlayer

H11 ( )intralayer

H22 ( )intralayer



  

Methodology
1)  ΔV12  -  .in plane avg

➔ ΔV12 ( ):      z constant in x and y

➔  Extend ΔV12 ( ) -  :  z in plane rotated supercells

➔     !Solve the eigenvalue problem once

      Apply the model to periodic commensurate structures

-in plane
.avg

ΔV12 ( )zΔV12 ( , , )x y z

 Unit cell

2) ΔV12 : -self consistent
➔   Begin with ΔV12  = 0
➔  !No approximations

ΔV12 = 0



  

1) ΔV12 ( ): -  z in plane averaged 
●   (  )Unit cells AB stacked

Model DFT   Single layer DFT

      Model results agree well with DFT results



  

 Rotated structures

  Rotated cell vector

7 7 : 21.787x supercell  o rotation

      We test our model on this system

  Unrotated cell vector

 Form supercell
 -with non trivial

!rotations



  

● :   /     Supercells AB stacked Gr Gr with and without rotation

7 7 x supercell

 Charge density

.  ~ Max Error 0.05 eV   !for unrotated confgurations

     !Model results agree well with DFT

Model DFT   Single layer DFT

   -  What happens in self consistent
  determination of ΔV12?  



  

2) ΔV12: -Self consistent
●   (  )Unit cells AB stacked

)a  /Gr Gr

DFT Model

ΔV
12

Model DFT   Single layer DFT

  Error varies linearly  with iteration
    !Calculation converged at second step

Max. error 
energies = 0.06 eV

Energy DFT Model Diff

Kinetic 572.69 572.05 -0.64

Hartree -27.12 -27.26 -0.14

Exc -38.34 -38.39 -0.05



  

)b  - / -h BN h BN
DFT ModelΔV

12

     .Error saturates at the frst step
    !Convergence is better for insulators

Model DFT   Single layer DFT

  = 4.28 Band gap eV
  = 4.24 DFT gap eV

Energy DFT Model Diff

Kinetic 643.37 642.86 -0.51

Hartree -27.62 -27.64 -0.02

Exc -37.04 -37.08 0.06



  

)c  / -Gr h BN

DFT ModelΔV
12Model DFT   Single layer DFT

  = 0.030 Band gap eV
  = 0.038 DFT gap eV

Energy DFT Model Diff

Kinetic 605.24 604.58 -0.66

Hartree -23.23 -23.38 -0.15

Exc -36.45 -36.51 -0.06



  

)d  MoS2/ MoS2

DFT ModelΔV
12

   - .Error larger than Gr Gr
     !The band structure is well represented

Model DFT   Single layer DFT

Energy DFT Model Diff

Kinetic 1493.32 1491.40 -1.92

Hartree -22.34 -22.81 -0.47

Exc -35.99 -36.08 -0.09



  

)b  - / -h BN h BN
DFT ModelΔV

12

     .Error saturates at the frst step
    !Convergence is better for insulators

Model DFT   Single layer DFT

  = 4.28 Band gap eV
  = 4.24 DFT gap eV

Energy DFT Model Diff

Kinetic 643.37 642.86 -0.51

Hartree -27.62 -27.64 -0.02

Exc -37.04 -37.08 0.06



  

) e MoS2/ WS2 DFT

Model DFT   Single layer DFT

Energy DFT Model Diff

Kinetic 1439.16 1440.69 1.53

Hartree -34.23 -34.19 0.04

Exc -40.80 -40.08 0.72

ΔV
12

Model

DFT

Model

ΔV
12

) 7 7 f x Supercells

)a  /  (Gr Gr 0  o )rotation



  

Shortcomings

●  ' '          Occupied d orbitals do not decay fast enough near the other layer

●    Errors larger in MoS2    as compared with Graphene

1-Gr 2-Gr WS
2

MoS
2

Occupied 'p' orbitals of layer 2
decay fast near potential of layer 1

Occupied 'd' orbitals of WS
2

do not decay fast near potential of MoS
2



  

Conclusions

●     Capability of the Code

–   Rotated and Unrotated structures
– -      -k point grid and path in k space

–  Generates    DOS and Band structures

–   -  Extended to self consistent calculations

–     Total Energy can be calculated

●        No a priori knowledge of interaction potential required

●  ~ 50  . . .  Errors meV w r t DFT calculations

●   /      Lattice mismatched rotated incommensurate structures can be
    !simulated without full DFT calculations  

●  :  Future scope heterostructures MoS2,  ,  ...Black phosphorus Gr
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) e WS2/ WS2

DFT Model
ΔV

12

Model DFT   Single layer DFT

Energy DFT Model Diff

Kinetic 1385.69 1386.77 1.08

Hartree -46.22 -47.08 -0.86

Exc -45.54  -45.65 -0.11



  

2) ΔV12: -Self consistent
●   (  )Unit cells AB stacked

)a  /Gr Gr
DFT ModelΔV

12

Model DFT   Single layer DFT

    !Calculation converged at frst step

.  Max error
 = 0.05 energies eV

Energy DFT Model Diff

Kinetic 579.19 578.70 -0.49

Hartree -33.25 -33.19 0.06

Exc -52.10 -52.05 0.05



  

)b  - / -h BN h BN
DFT Model

ΔV
12

     .Error saturates at the frst step
    !Convergence is better for insulators

Model DFT   Single layer DFT

  = 4.28 Band gap eV
  = 4.42 DFT gap eV

Energy DFT Model Diff

Kinetic 648.82 647.70 -1.12

Hartree -33.25 -34.53 -1.28

Exc -51.84 -51.78 0.06



  

)c  / -Gr h BN

DFT ModelΔV
12

Model DFT   Single layer DFT

  = 0.047 Band gap eV
  = 0.034 DFT gap eV

.  Max error
 = 0.25 Energies eV

Energy DFT Model Diff

Kinetic 648.82 647.70 -1.12

Hartree -33.25 -34.53 -1.28

Exc -51.84 -51.78 0.06



  

)d  MoS2/ MoS2

DFT ModelΔV
12

   - .Error larger than Gr Gr
     !The band structure is well represented

Model DFT   Single layer DFT

Energy DFT Model Diff

Kinetic 1502.2 1502.7 0.5

Hartree -61.06 -60.42 -0.36

Exc -187.34 -187.23 0.11



  

) e MoS2/ WS2

DFT Model
ΔV

12

Model DFT   Single layer DFT

Energy DFT Model Diff

Kinetic 1446.56 1447.09 0.53

Hartree -74.31 -72.80 1.51

Exc -231.49 -231.26 0.23



  

) f WS2/ WS2

DFT Model
ΔV

12

Model DFT   Single layer DFT

Energy DFT Model Diff

Kinetic 1391.90 1387.75 -4.5

Hartree -86.46 -85.70 0.76

Exc -275.60 -275.48 0.12



  

 = | Error  ∫ (ρin  – ρout)  |dr

 /Gr Gr - / -h BN h BN / -Gr h BN

 MoS2/ MoS2

DFT Model

ΔV
12

-      !Self consistent results agree well with DFT

  Error decreases linearly
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