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Introduction



Perfectly matched layers

Bérenger, 1994 1996, Maxwell 2D and 3D.
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Wave source
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Properties : Perfect matching, exponential decay.
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LU := 8:U + AU + Ad U + AsdU = F, U :R® - RV



PML(0,0,05 ,05")

PML (0y 05,08 ,05")

PML (0] ,07°,0,0) PML (o} .0{",0,0)

Perfect conductor
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LU := 0l + A0 U + AU + AU = F, U :R* - RN
LU := atU aF Alaxl ) 4 A28X2U —+ A38X3U =0

Splitting |
0. Ut + A10,, (Ut + U% + UP) =0
0:U? + A0, (Ut + U? + U3) =0
0 UB + Azd, (U + U? + UB3) =0

U=U'+0*+ 17



PML(0,0,05 ,05")

PML (0y 05,08 ,05")

PML (0] ,07°,0,0) PML (o} .0{",0,0)

Perfect conductor

PML(0; ,07",05.,05")

PML(0,0,05,05°)

LU := 8:U + A0 U + A2d U + A3dssU = F, U : R* - RV
0:U + Alaxl U+ A26X2 U+ A3(9X3 U=20

Splitting | Absorption
6tU1 —|—A16X1(U1 aF U? aF U3) T 0'1(X1)U1 =0
0:U% + A0y, (U* + U? + U3) + 02(x0)U? = 0

atU?’ = A38X3(U1 + U? + U3) aF O’3(X3)U3 =0
U=U'+0*+1°



The Cauchy problem for constant coefficients



Well-posedness for the homogeneous operator

L(0, k) = ZkAJ, U(t) = e~ LK

Cauchy problem strongly well-posed (Maxwell symmetric hyperbolic)

1U(t, Mgy < Ke®F[| V0| 2(re)
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Well-posedness for the homogeneous operator

L(0,k) =D kiA;, U(t)=e MONE

Cauchy problem strongly well-posed (Maxwell symmetric hyperbolic)

|| U(l’7 -)||L2(R2) < Ke® t” UOHLQ(Rz)

L1(8,04)U := {0, U/ + A0 (Ut + U 4+ UP)}j=1,.3=0

_ kiAr kA1 kA _ . _
L1(0,k) = | oAy koAy koAs |, U(t) = e LRt
ksAs  ksAs  ksAs
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Well-posedness for the homogeneous operator

L(0,k) =D kiA;, U(t) =e N1

Cauchy problem strongly well-posed (Maxwell symmetric hyperbolic)

[U(t, )lamey < Ke* || U°| 2(re)
L1(¢, ) U = {000 + A9 (U* + U2 + U3)}j—1. 5 =0

- kiA1 kAL kA _ o
Ll(O, k) = k2A2 k2A2 k2A2 , U(t) = e*”—(o’k)t UO
ksAs  ksAz  k3Asz

Cauchy problem only weakly well-posed
ICU(t,.), UP(t, ), UP(t, ))llizmey < K(1+ £)e[[ U0 ee)
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Tools: Garding and Kreiss

— ] ;

Heinz-Otto Kreiss
12-2015




Bérenger's model is only weakly well-posed

PMLswere! originallylintroduced! forl Maxwell’sl equations] byl Bérenger! [8].] Well-
posednesslandlstabilityloflthel B “erenger! PMLIhaslbeenltheltopicloflnumerous! works.l

Forl examplel Abarbanell and! Gottlieb! [1]lshowed] that! B “erenger’s! “split-field”] PMLI
was! onlyl weakly! well-posed! . Similar]
resultslwerelalsolobtainedvial Fourierlandlenergyltechniques!bylB “ecacheland! Jolylinl
[6].1 Thel issuel of] weak] well-posedness! led! tol thel development! ofl various] well-posed!

Appeld-Hagstrom-Kreiss(Gunilla), 2006




Bérenger's model is only weakly well-posed

PMLswerel originallylintroduced! forl Maxwell’sl equations] byl Bérenger! [8].1 Well-
posednesslandlstabilityloflthel B “erenger! PMLIhas!beenltheltopicloflnumerousi works.!
Forl examplel Abarbanell and! Gottlieb! [1]lshowed] that! B “erenger’s! “split-field”] PMLI
was! only! weakly! well-posed] I Similar!
resultslwerelalsolobtainedlvialFourierlandlenergytechniques!bylB “ecachelandlJolylin]
[6].1 Thel issuel ofl weak] well-posedness! led! tol thel development! ofl various] well-posed!

Appeld-Hagstrom-Kreiss(Gunilla), 2006

[6] : From [9] we know that the corresponding Cauchy problem is
weakly well-posed but not strongly well-posed: there is necessarily
a loss of regularity, at least for some initial data.




Closer look

(?EX in H I:I
=+ 1)
2D M E)E iw A
axwell a—fy — __1 (1_] ]-]y)
antEX = 8yH
608tEy = —6XH aHX iw1 E
po0tH = OyEc — O«E, ot e Mo Y
6H 1(1)2
., _E\’s
ot Mo




Numerical experiments

Prediction [|(Hx, Hy)(t,.)ll2®e) < K(1 + )€ || U0 12 (r2)

- 1
Initial data E® = a(x, y) 2™ «V' () 'y = —_ (1,-1),w =5x2", 0 < n <5.
y

V2

Maxwell system: ||(E, H)| ;2 , Bérenger system ||(E, Hx, Hy, H)|[.2 .
Normalized by ||(£, H)||.2 at initial time.

Frequency 10 20 40 80 160
Maxwell 0.1702 | 0.1703 | 0.1703 | 0.1703 | 0.1703
Berenger || 0.2121 | 0.3012 | 0.5247 | 1.0036 | 1.9546

Table : L2 norm as a function of the frequency. General case
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Numerical experiments

Prediction [|(Hx, Hy)(t, )l 2®e) < K(1 + £)e“[|U°] 12 (r2)

, 1
Initial data E® = a(x, y) €™ @V () 1y = 7 (1,-1),w=5x2",0< n<5.

Maxwell system: ||(E, H)| ;2 , Bérenger system ||(E, Hx, Hy, H)|[.2 .
Normalized by ||(£, H)||.2 at initial time.

Frequency 10 20 40 80 160
Maxwell 0.1702 | 0.1703 | 0.1703 | 0.1703 | 0.1703
Berenger 0.2121 | 0.3012 | 0.5247 | 1.0036 | 1.9546

Table : L? norm as a function of the frequency. General case

Frequency 10 20 40 80 160
Maxwell 0.1269 | 0.1132 | 0.1162 | 0.1226 | 0.1266
Berenger || 0.0642 | 0.0568 | 0.0581 | 0.0613 | 0.0633

Table : L? norm as a function of the frequency. div(&) = 0
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Numerical experiments

m For solenoidal initial data (divE = 0),
I(E, H)ll 20, 1yxe) = C(T)II(E, H)(0) ]2

1(Hs, Hy)ll2(0,7)x2) = C(T)II(E, H)(0) 20
m For non solenoidal initial data (div E # 0)

I(E, H)ll 20, 7y x) = C(T)II(E, H)(0)l| 2(0)

|(Hx, Hy)ll 20, yx ) = C(T)wl[(E, H)(0)]| 2(e)

0 = 0, STRONG WELL-POSEDNESS FOR PHYSICAL SOLUTIONS.
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Proof (Abarbanel-Gottlieb)
Abarbanel/Gottlieb’s solution

. w?

= ———s
0} + 0}

Wy

5. 280
0} + w3

)
i (0))

_— (ﬁo sin vt — 3 cos vt)
aoc\/w% + w%

01w w% .
=i € _—
v w%+w% 0 w%+w§go
[0 AL
N R — ————{(hgsin vt — B cos vt
E(0)=¢), E,0)=4g goc Vol + w3 )

H(0)=ho— 4, H\(0)=4 - wdhy — (0} + w3)ly |inen(anéy + wdy)

Cauchy data ! 0} + v} (0f + 03
+ of (h t + wsin vt)
T a— COS Vi ® S1N Vi
w% + w% 0
0= w3hy — (0} + 03l |iwwy(@1éy + wa80)
y ol + 3 (of + w)uo
2
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Proof (Abarbanel-Gottlieb). Continue

2

o] 0,

EI = ﬁ(’o +
i + w5

.. 280
w% T w%g
i(dz
+ -
soc\/(ul + w3
2

w3
8o
o? + w}

oWy n
=——">¢
7wl + 0

iw1

soc\/w% + w3

(ho sin vt — B cos vt)

1= 0= @3+ 0Dy ofwrto 0t iy (B) (w, ¢ = 0)

EX(O) = éO’ Ey(o) = gO
A.0)=ho— 4, Hy0)=4

> (hosin vt — B cos vt)

* 0} + 0}
2

w+

a wzho - (w1 + w%)/AO

(0 + 03)po

7
= (ho cos vt + w sin vr)

iw1wy(w1é + 280)

o} + w3

w+

(0} + wd)uo

Py
72(h0 cos vt + fBsin vt),

/37



Proof (Abarbanel-Gottlieb). Continue

. 2 10,

T o+ w3 + w} go
iy A
————=(hypsin vt — B cos vt)
SoC\/w% + w3
For a physical solution, £ o0 }
7 0l + 0} 3"

div(E) =0 ion

806\/(0% + w%

(hgsin vt — B cos vf)

1. = wdhy = (0} + 0l _ioiwyw1é + 0,80)

* o} + w3 (0} +
+ o (h t + o sin vr)
—— (ho cos vt + @ sin v
w% P w% 0

z 3o — (0 + 03 T 80+ ang
7= @ (0} + 0d)h | Toren(onéy wzgo)‘l/

+
’ CACEENT S
2

w5 A .
———— (hg cos vt + Bsin vt),
w%_'_w%( 0 B )




Numerical experiments

m For solenoidal initial data (divE = 0),
I(E, B)ll2((0.1yx2) = C(T)II(E, B:)l[ 20

1(Bzx; Bzy)lliz(0,1yx2) = C(T)II(E, Bz)ll 20
m For non solenoidal initial data (div E # 0)

I(E, B)ll 20, 7)x) = C(T)II(E, B:)l2(e)

(B2, Bay)ll2((0, 1y xe) = C(T)KII(E, B2)ll 2

o = 0, STRONG WELL-POSEDNESS FOR PHYSICAL SOLUTIONS.
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Well-posedness for the full operator

L(8,8)U := {8: U + Aig;(U + U2 + UP) + 0P} j1, 3 =0
THEOREM

The Cauchy problem for Ly is weakly well posed if and only if for
each £ € RY, the eigenvalues of L;(0,&) are real.

The Cauchy problem for L; is strongly well posed if and only if for
each £ € RY, the eigenvalues of L1(0,¢) are real and Ly(0,€) is
uniformly diagonalisable, there is an invertible S(&) satisfying,

S(€)7'L1(0,€) S(€) = diagonal, S, STt € L™(RY).
If B has constant coefficients, then the Cauchy problem for

L = L; + B is weakly well posed if and only if there exists M > 0
such that for any ¢ € RY, det L(7,£) =0 = |S7| < M.
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Results for constant absorption

L(8,8)U := {8: U + Aig;(U + U2 + UP) 4+ 0P} j1, 3 =0

THEOREM(HRP,Confluentes Mathematicii 2011. Generalizing several
papers) Suppose that 7 = 0 is an isolated root of constant multiplicity m
of detLy(7,£) =0.

17 /37



Results for constant absorption

L(8,8)U := {8: U + Aig;(U + U2 + UP) 4+ 0P} j1, 3 =0

THEOREM(HRP,Confluentes Mathematicii 2011. Generalizing several
papers) Suppose that 7 = 0 is an isolated root of constant multiplicity m
of detLy(7,£) =0.

If the Cauchy problem for L; is strongly well posed, then for
arbitrary constant absorptions o; € C, the Cauchy problem for

Ly + B is weakly well posed.
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If the Cauchy problem for L; is strongly well posed, and if there is a
& # 0 such that ker L(0,£) # 520 ker A;, then L1(0,€) is not

diagonalizable. Therefore the Cauchy problem for L is not strongly
well posed.
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Results for constant absorption

L(8,8)U := {8: U + Aig;(U + U2 + UP) 4+ 0P} j1, 3 =0

THEOREM(HRP,Confluentes Mathematicii 2011. Generalizing several
papers) Suppose that 7 = 0 is an isolated root of constant multiplicity m
of detLy(7,£) =0.

If the Cauchy problem for L; is strongly well posed, then for
arbitrary constant absorptions o; € C, the Cauchy problem for
Ly + B is weakly well posed.

If the Cauchy problem for L; is strongly well posed, and if there is a
& # 0 such that ker L(0,£) # 520 ker A;, then L1(0,€) is not

diagonalizable. Therefore the Cauchy problem for L is not strongly
well posed.
If the Cauchy problem for L is strongly well posed and for all &,
ker L1(0,¢&) = gr;O ker A;, then the Cauchy problem for L is strongly
j

well posed. This condition holds if L1(0, d) is elliptic, that is
det L1(0,¢&) # 0 for all real &.

17 /37



Results for constant absorption

L(8,8)U := {8: U + Aigj(U + U2 + UP) 4+ 0; P} j1, 3 =0
THEOREM(HRP,Confluentes Mathematicii 2011. Generalizing several
papers) Suppose that 7 = 0 is an isolated root of constant multiplicity m
of detLy(7,€) = 0.

If the Cauchy problem for L; is strongly well posed, then for
arbitrary constant absorptions o; € C, the Cauchy problem for

Zl + B is weakly well posed.

If the Cauchy problem for L; is strongly well posed, and if there is a
& # 0 such that ker L(0, &) # 520 ker A;j, then L1(0,€) is not
j

diagonalizable. Therefore the Cauchy problem for L is not strongly
well posed.

APPLIES TO MAXWELL

1: Seidenbere-Tarski Theorem (on the roots of the characteristic 17/37



Smooth absorption (HPR, CM 2011)
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The result

U=E+iH,

W o= {U:(U17U2,U3)€H2(R3;(C3)3} L Ul=0, U2=o0, U33:0}.
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The result

U=E+iH,

H o= {U: (UL U2, U%) € H3(R®; C3)%) : Ul=0, (2=0, U :0}.
THEOREM If o}, for j = 1,2,3, belong to W?>°(R), then for any

Up = (U}, U2, U3) in H there is a unique solution U in L2(0, T;H) of the

split Cauchy problem with initial value Up. Furthermore thereisa ¢ >0
independent of Uy so that for all positive time t,

10(e, Moy < e [[Uo || pragasyys -

m 2D estimates: JLLions-Metral-Vacus
m Full proof in 2D with the Yee scheme : Sabrina Petit thesis.

m 3D : HPR.

19/37



Elements of proof

m Get estimates on a larger vector V for which a strongly hyperbolic
problem holds.

Semi-discretize in space and obtain similar discrete estimates
Pass to the limit.

Uniqueness goes through the estimates.

20/37



V = (U, Vi7Vi’j, WJ'7 UJ'7 w, ZJ) c C%.
U= U+ U2+ 13, V= gU, VY = 90,
W = Zkgk(Xk)Uk,Wj = BjW,

Z = Y k(Wi + or(xk) Uk), Zi = 9;Z,

0:V + P(0)V + B(o, Do, D?¢)V = 0

LemmaThis problem is strongly well-posed (symmetrizable).

21/37



Iy ® L(0,0)
06,4 ® 033
034 ®033
034 ®033
04,4 ® 033

04,6 ® 033
s @ L(0,0)
036 ® 033
03,6 ®033
04,6 ® 033

043®033 023®033 044®033

(l6 ® L(0,0))M 053 ® 033 064 ® 033

>

O OO oo

033 ® 033 0335®033 034®033
033®033 033®033 034®033
043 ® 033 043 ®033 044 ®033
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Transmission problem, one absorption (HPR, CM 2011)

23/37



Transmission Problem, One Absorption

L(8y,01,0\U =F L(0y,0,,0)U =0

THEOREM

If o(x1) = constant x 1,,~¢ and L(9) is hyperbolic, non degenerate
with respect to xi, then the constant coefficient transmission
problem is weakly well posed.

If 7(0) = 0, o(x1) € WH(R), [(8) is hyperbolic for some constant
o , non degenerate with respect to xj, then the transmission
problem is weakly well posed.

Proof. For 1 Verify the criterion of R. Hersh.
For 2 the problem can be nearly conjugated to the constant coefficient
case. O 24 /37



Transmission Problem with Discontinuous Absorption

L(8,,0,,0\U = F L(8,,0,,0)U =0
; 0:El + aj(x)E! = C;0;B,
hE =3 G0;B—], B " Ej__JJ O:E

E=FE'+EF24+E3
B=B'+B*+ B
18 unknowns

Transmission conditions at x; =0 : [GGE] =0, [G1B] = 0.

6 unknowns

Cl = (§ § —21) — [(E2, E3)] = 07 [(827 83)] =0.

25 /37



Hersh Theorem

U0 LgeN

L(9:,01,0)U = F L(0;,0,,8)U =0

Git(r,m) = {V(x1) solution of L(7,8y,in)V =0,V — 0 when x; — o0}
Gt (1,m) = {trace at x; = 0 of elements in G;*(7,7)}

Uniqueness <~ Y(1,7n),RT > 0, (C:;L_(T, n), G{(T,’I?)) NN = {0}

Well-posedness <= Y(7,n),R7 > 0, (G, (7,7), C{’(T, n)) &N = {0}

26 /37



The 2D transmission problem for elliptic generator (HR, X-EDP 2013)

27 /37



Elliptic generator

L1(0:,0)U := 0:U + > _ AjdjU =0

L1(0,k) = Z KA;, U(t) = e MORt g

If the Cauchy problem for L; is strongly well posed and for all &,
ker L1(0,¢&) = 520 ker A;, then the Cauchy problem for L is

strongly well posed. This condition holds if L;(0,dy) is elliptic,
that is det L1(0,&) # 0 for all real &.

Warm-up for the 3 — D Bérenger-Maxwell problem L.

Halpern & J. Rauch, Bérenger/Maxwell with Discontinous Absorptions:
Existence, Perfection, and No Loss. Séminaire Laurent Schwartz-2012-2013,
Exp. No. 10.
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@ The full 3D analysis for Maxwell (HR,AIMS, 2016)
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Transmission Problem

c0.E =Y G9;B — |, e(0cE + 0j(x)E') = G (3 Br),
10:B = — Y GOE. OB + ai(x)E) = — 3= GO (X Ex)-

__J(E,B)in O,
SRS {(z Ee S B in 2\ 0.

30/37



The result

THEOREM 3C, Ao, depending on w. If A > Ao, suppj C [0, co[xw, and

Vol <1, |08 € MI(R; 2(RY)

then there are E, B defined on R; x @ and split functions E’, B/ defined on
R; x UO,, supported in t > 0, so that the total field

‘ U= (E,B) € eH'(R x R?) ‘ and satisfies the Bérenger differential
equations. Any solution with U € e**H*(R x R®) satisfies for A > Ao

[ NG, Do AT bl [y

(1)
< € [ 3 J0r(e) e -
|| <1
On each octant O,, the split fields satisfy E’ BJ =0 for all j, and
/e—2“||Ef,Bf,atEf,athHfz(o \ dt
—2Xt (2)
o= C/ Z ”aij HL2 R3)
|| <1

In particular there is uniqueness for such solutions.

31/37



The key points

USE THE DIVERGENCE
EQUATION.

Existence of smooth solutions by
the result above for o € W2,
Laplace transform-+ Paley-Wiener.
Passing to the limit needs H*
estimates. Partition of unity.

m Standard estimates in O.

m Estimates in R®\ @.

m Well adapted operator in all of

R3.

Use the estimates to have weak
convergence of a family of solutions
with regular o.

Uniqueness through the estimates.

32/37



The well-adapted operator

Relies on the “tilde" operators of the type

e T
divu = Z ﬁaj@uj
J

B=K°
and algebras like
div curl =0, div grad = A.
A7+ o X 1 g g
Pe = ep TH I 5 o 1t o)+ 0iaa) oy 4 g

T € 7(7 + o))

33/37



What about perfection ?

1 O
RW BK/%

Free-space problem Transmission problem
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What about perfection ?

1 Vs Y
RW AK/}

Free-space problem Transmission problem

Perfect matching (Appelo-Hagstrom-Kreiss) is V = U in O.
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What about perfection ?

|
RW %i/%

Free-space problem Transmission problem

Perfect matching (Appelo-Hagstrom-Kreiss) is V = U in O.

Follows from well-posedness by change of coordinates (Diaz-Joly) thanks
to holomorphy.

34 /37



Conclusions and perspectives

e The first proof of well-posedness for the full 3D Maxwell-Berenger
problem with (discontinuous) matrix coefficients.

Hyperbolic Boundary Value Problems with Trihedral Corners to appear in
special issue of AIMS for Peter Lax’s 90's birthday.
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Conclusions and perspectives

e The first proof of well-posedness for the full 3D Maxwell-Berenger
problem with (discontinuous) matrix coefficients.

Hyperbolic Boundary Value Problems with Trihedral Corners to appear in
special issue of AIMS for Peter Lax’s 90's birthday.

e The boundary value problem

e Maxwell + dissipative boundary conditions : done in AIMS paper.
e Berenger Maxwell : poses real difficulties.
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The grail

Thank you for your attention
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Calculs pour Maxwell 2D

Calculs Maple

Maxwell:

Ex
Ey
H

)(t)—

Ex Ex
e (Ey) (0) = PetPp~? <Ey> (0)
H H

iwy 0 0 0
—iw1 |, D=0 Jiw| 0
0 0 0 —iw
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Calculs pour Maxwell 2D

Calculs Maple
Ex B Ex
Maxwell: [ E, | (t) = e | £, | (0) = PetPP~1 [ E, | (0)
H H H
Ei Ex Ex
Bérenger-Maxwell : Ey (t) = M f,y (0) = Pet/p~1 E (0)
X X X
H, H, H,
0 0 iwn 0 0 0
A=| o0 0 —iw],D=[(0 iw 0
I'(,U2 —iwl 0 0 0 —i|w|
0 0 iy iwp 01 o0 0
| o 0 —iwg —iw _|o o o 0
M=1l0o —in o o ["7= o 0 iw o
iy 0 0 0 0 0 0 —ilw
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Calculs pour Maxwell 2D

Calculs Maple
EX Ex EX
Maxwell: [ E, | (t) = e | £, | (0) = PetPP~1 [ E, | (0)
H H H
EX Ex EX
. | B _.tm| E _ potip-1 | Ey
Bérenger-Maxwell : H, (t)y=-e H. (0) = Pet’P H (0)
Hy Hy Hy
0 0 iwp 0 0 0
A=| o0 0 —iw],D=(0 ilw 0
I'(,U2 —iwl 0 0 0 —i|w|
0 0 iwo iwn 0 1 0 0
_| 0 0 —iwp  —iwy |0 0o o 0
=Ty Sy @ o "= o 0 iw o
iwa 0 0 0 0 0 0 —iuwl
o 0 0 LR 0
efD — (o0 ei|w|t 0 etJ _ 0 1 '0 0
- ; ¢ T o o el 0
0 0 e—ilwl|t

0 0 0 el
the factor ¢ will factorize the second component of P~1U(0),
(w1 Ex + w2 E,)(0) = div(E)(0).
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