
Time-dependent Wave Splitting and Source Separation

Marie KRAY

Department of Mathematics and Computer Science,
University of Basel, Switzerland

Joint work with Marcus J. Grote (Univ. Basel),
Frédéric Nataf (LJLL Paris 6) and Franck Assous (Ariel Univ.)

BIRS Workshop: Computational and Numerical Analysis of Transient Problems
in Acoustics, Elasticity, and Electromagnetism

January 18-22, 2016



Content
.

1 Introduction and motivation

2 Step 1: Wave Splitting

Principle using non-reflecting boundary conditions

Wave splitting in the two-space dimensional case

Numerical example

3 Steps 2 and 3, in short

Step 2: Time Reversed Absorbing Conditions (TRAC)

Step 3: Adaptive Eigenspace Inversion

4 Conclusion

Marie KRAY (Univ. Basel) Wave Splitting Banff 2016 2 / 34



Outline
.

1 Introduction and motivation

2 Step 1: Wave Splitting

Principle using non-reflecting boundary conditions

Wave splitting in the two-space dimensional case

Numerical example

3 Steps 2 and 3, in short

Step 2: Time Reversed Absorbing Conditions (TRAC)

Step 3: Adaptive Eigenspace Inversion

4 Conclusion

Marie KRAY (Univ. Basel) Wave Splitting Banff 2016 3 / 34



Introduction and motivation
.

Ambient medium
wave propagation speed

c0 known

Unknown inclusion
wave propagation speed
c(x) ≥ c0 non constant D

•

Incident wave uI
sent in the medium

Scattered field uS
Γ

Ω

Total field u := uI + uS recorded on boundary Γ
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Introduction and motivation
.

Aim: solve a time-dependent inverse problem from measurements data
in situations when the incident field is unknown

But!!! needed to solve inverse problems
⇒ computation of the forward problem
in the optimization process

Assumptions about the incident field:
location: approx. known
time history: unknown

D

•
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Introduction and motivation
.

Examples of applications:

in medical imaging
e.g. Contrast-enhanced ultrasound:
microbubbles as contrast agents
[1] M. Pernot, G. Montaldo, M. Tanter, and M.

Fink. “Ultrasonic stars” for time reversal
focusing using induced cavitation bubbles.
Appl. Phys. Lett., 88(3):034102, 2006.

[2] S. R. Sirsi, M. A. Borden. Advances in
Ultrasound Mediated Gene Therapy Using
Microbubble Contrast Agents, Theranostics,
2(12):1208-1222, 2012. from [2]

in geophysics
e.g. Full Waveform Inversion or imaging
[3] N. Tu, A. Y. Aravkin, T. van Leeuwen, and F. J. Herrmann. Fast

least-squares migration with multiples and source estimation, EAGE
2013.
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Introduction and motivation
.

Idea: split the measurements data into incident and scattered wave fields

Process:

1 wave splitting
⇒ split measurement data u into uI and uS on boundary Γ

2 time reversed absorbing conditions
⇒ reconstruct either field uI or uS inside the computational
domain Ω delimited by Γ

3 inverse problem
⇒ recover the unknown inclusion by PDE-constrained optimization

Focus on Wave Splitting...
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Step 1: Wave Splitting
Principle using non-reflecting boundary conditions

Multiple scattering problem: u = u1 + u2 , in Ω := Rd \ (S1 ∪ S2)

u satifies:
∂2u

∂t2
− c2

0 ∆u = 0 in Ω, t > 0.

Question: Given the measured total field u, can we recover u1 and u2
without knowing in advance either of them ?
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Step 1: Wave Splitting
Principle using non-reflecting boundary conditions

Other works on Wave splitting:
in the frequency domain

F. Ben Hassen, J. Liu, and R. Potthast. (2007)
On source analysis by wave splitting with applications in inverse scattering of multiple
obstacles. J. Comput. Math, 25(3):266–281.

R. Griesmaier, M. Hanke, and J. Sylvester. (2014)
Far field splitting for the Helmholtz equation. SIAM J. Numer. Anal., 52(1):343–362.

H. Wang and J. Liu. (2013)
On decomposition method for acoustic wave scattering by multiple obstacles.
Acta Mathematica Scientia, 33B(1):1–22.

in the time-dependent domain

R. Potthast, F. M. Fazi, and P. A. Nelson. (2010)
Source splitting via the point source method. Inv. Problems, 626(4):045002.

Our method is local in space and time, deterministic, and also avoids
a priori assumptions on the frequency spectrum of the signal.
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Step 1: Wave Splitting
Principle using non-reflecting boundary conditions

Outside S1 and S2, u satisfies:

∂2u

∂t2
− c2

0 ∆u = 0 in Ω, t > 0,

c0 > 0 constant.

At t = 0, no signal in Ω, then uniqueness of splitting1

u = u1 + u2 in Ω, t > 0

and uk outgoing (3D):

uk(t, rk , θk , ϕk) =
1
rk

∑
i≥0

fk,i (rk − c0t, θk , ϕk)

(rk)i

(rk , θk , ϕk) spherical coordinates centered at Ck .

1M. J. Grote and C. Kirsch. Nonreflecting boundary condition for time-dependent multiple scattering. J.
Comput. Phys., 221(1):41–67, 2007.
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Step 1: Wave Splitting
Principle using non-reflecting boundary conditions

Since
uk(t, rk , θk , ϕk) =

1
rk

∑
i≥0

fk,i (rk − c0t, θk , ϕk)

(rk)i

(rk , θk , ϕk) spherical coordinates centered at Ck ,

mth-order absorbing boundary condition2 on any Γ in Ω

Bk [uk ] = O

(
1

r2m+1
k

)
, k = 1, 2

2A. Bayliss and E. Turkel. Radiation boundary conditions for wave-like equations. Comm. Pure Appl. Math.,
33(6):707–725, 1980.
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Step 1: Wave Splitting
Principle using non-reflecting boundary conditions

Neglecting the higher order error term:

Bj [uk ] = Bj [uk + uj ] = Bj [u], j = 1, 2, k 6= j

Recover u1 and u2 by solving:{
B2[u1] = B2[u] (1)
B1[u2] = B1[u] (2)

where u is known (measurements on Γ)

Difficulty: integration of partial differential equation (1)-(2)
on the submanifold Γ

Find adequate initial and boundary conditions

Change of coordinates from (rk , θk , ϕk) to (rj , θj , ϕj)

Remove normal/radial derivatives (equation on Γ involving only
(t, θj , ϕj))
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Step 1: Wave Splitting
Wave splitting in the two-space dimensional case

In 2D, Bayliss-Turkel first order absorbing boundary condition

Bj [u] =
1
c0

∂u

∂t
+
∂u

∂rj
+

u

2rj

For simplicity, let Γ := Γ1 be a circle centered at C1.

. C2C1

Ω

Γ1

Marie KRAY (Univ. Basel) Wave Splitting Banff 2016 14 / 34



Step 1: Wave Splitting
Wave splitting in the two-space dimensional case

E.g. to recover u1 on Γ1

B2[u1] = B2[u]

1
c0

∂u1

∂t
+
∂u1

∂r2
+

u1

2r2
=

1
c0

∂u

∂t
+
∂u

∂r2
+

u

2r2

How to solve this PDE for u1?

need initial and boundary conditions

remove the radial derivative! we solve on Γ1

derivatives in (r2, θ2), when domain in (r1, θ1)

=⇒ rewrite the PDE using only
∂

∂t
,

∂

∂θ1
and 0th-order term

Marie KRAY (Univ. Basel) Wave Splitting Banff 2016 15 / 34



Step 1: Wave Splitting
Wave splitting in the two-space dimensional case

PDE reads: (
1
c0

∂

∂t
+

∂

∂r2
+

1
2r2

)
u1 = B2[u]

First step:
Change of coordinate system from (r2, θ2) to (r1, θ1)

∂

∂r2
= K (r1, θ1)

∂

∂r1
+ M(r1, θ1)

∂

∂θ1

where K , M only depend on the change of coordinates, hence(
1
c0

∂

∂t
+ K (θ1)

∂

∂r1
+ M(θ1)

∂

∂θ1
+

1
2r2

)
u1 = B2[u] , on Γ1, t > 0

!!! on Γ1, solution only depends on t and θ1 since r1 constant
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Step 1: Wave Splitting
Wave splitting in the two-space dimensional case

Second step:
Assume from the progressive wave expansion

u1(t, r1, θ1) ' 1
√
r1
f1(r1 − c0t, θ1)

Then f1 satisfies:
∂f1
∂r1

= − 1
c0

∂f1
∂t

by replacing in the PDE(
1
c0

∂

∂t
+ K (θ1)

∂

∂r1
+ M(θ1)

∂

∂θ1
+

1
2r2

)(
1
√
r1
f1

)
= B2[u](

1
c0
√
r1

∂

∂t
+

K (θ1)
√
r1

(
∂

∂r1
− 1

2r1

)
+

M(θ1)
√
r1

∂

∂θ1
+

1
2r2
√
r1

)
f1 = B2[u]

= − 1
c0

∂

∂t
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Step 1: Wave Splitting
Wave splitting in the two-space dimensional case

Finally: PDE to recover f1 =
√
r1u1 on Γ1, t > 0(

α1(θ1)
∂

∂t
+ β1(θ1)

∂

∂θ1
+ γ1(θ1)

)
f1 =

(
1
c0

∂

∂t
+

∂

∂r2
+

1
2r2

)
u,

with

α1(θ1) =

√
r2
1 + `2 − 2r1` cos(θ1)− r1 + ` cos(θ1)

c0
√
r1
√
r2
1 + `2 − 2r1` cos(θ1)

,

β1(θ1) =
` sin(θ1)

r1
√
r1
√
r2
1 + `2 − 2r1` cos(θ1)

,

γ1(θ1) =
` cos(θ1)

2r1
√
r1
√
r2
1 + `2 − 2r1` cos(θ1)

,

and ` the signed distance between C1 and C2.
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Step 1: Wave Splitting
Wave splitting in the two-space dimensional case

We want to recover f1 =
√
r1u1 which satisfies on Γ, t > 0(

α1(θ1)
∂

∂t
+ β1(θ1)

∂

∂θ1
+ γ1(θ1)

)
f1 =

(
1
c0

∂

∂t
+

∂

∂r2
+

1
2r2

)
u,

Initial condition?
At t = 0, no signal in Ω: all sources in S1 ∪ S2

=⇒ f1 and f2 vanish in Ω, thus on Γ1 ∪ Γ2

the initial condition is:

f1 = 0 , on Γ1, at t = 0.
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Step 1: Wave Splitting
Wave splitting in the two-space dimensional case

Hyperbolic PDE(
α1(θ1)

∂

∂t
+ β1(θ1)

∂

∂θ1
+ γ1(θ1)

)
f1 =

(
1
c0

∂

∂t
+

∂

∂r2
+

1
2r2

)
u

trivial at θ1 = 0 or π modulo 2π, since α1(θ1) = 0, β1(θ1) = 0

=⇒ Dirichlet boundary condition: f1 =
B2[u]

γ1(0)
at θ1 = 0

−1 0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

θ

t

StableStable
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Step 1: Wave Splitting
Wave splitting in the two-space dimensional case

... and by using time reversal1

.

c(~x)

f (~x , t)

×
C2×

C1
Reconstruction of
time-reversed f1

Reconstruction of
forward f1

Ω

Γ

A similar equation can be derived for f2 on the same boundary Γ = Γ1.
1 M.J. Grote, M. Kray, F. Nataf and F. Assous. Time-dependent wave splitting and source separation. (2016)
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Step 1: Wave Splitting
Numerical example

Incident wave field from a point source

Scattered wave field from a penetrable fish-shaped inclusion
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Step 1: Wave Splitting
Numerical example

Time history of wave fields at one
location: incident wave impinges
on a penetrable inclusion

0 0.5 1 1.5 2
−0.1

0

0.1
Total Field

u total
u1 + u2

0 0.5 1 1.5 2
−0.1

0

0.1
Reconstruction of u1

u1 exact
u1 recons.

0 0.5 1 1.5 2
−0.1

0

0.1
Reconstruction of u2

u2 exact
u2 recons.
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Steps 2 and 3, in short
Step 2: Time Reversed Absorbing Conditions (TRAC)

Aim: Reconstruct the outgoing wave
field u in Ω \ D from measurements
on Γ reversed in time.

Ω

Γ

D

The wave equation is time reversible. The time reversed field
uR(t, ·) := u(T − t, ·) is solution of a wave equation as well:

∂2uR
∂t2

− c2
0 ∆uR = 0 in (0,T )× (Ω \ D),

uR(t, ·) = u(T − t, ·) on (0,T )× Γ,

uR = ? on (0,T )× ∂D,

with homogeneous initial conditions.

This problem is undetermined because D is unknown!
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Steps 2 and 3, in short
Step 2: Time Reversed Absorbing Conditions (TRAC)

Time Reversed Absorbing Condition (TRAC) method:

Introduce a subdomain B enclosing the inclusion D.

Ω

Γ

B
D

Reconstruct the time-reversed wave field in Ω \ B
by imposing a relevant boundary condition on ∂B.

=⇒ TRAC

Marie KRAY (Univ. Basel) Wave Splitting Banff 2016 26 / 34



Steps 2 and 3, in short
Step 2: Time Reversed Absorbing Conditions (TRAC)

Reconstruction of the total wave field

exact sum
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Steps 2 and 3, in short
Step 3: Adaptive Eigenspace Inversion

Aim: recover the location, shape and
properties of inclusion D from the recon-
structed data on a reduced computational
domain

Ω

Γ

B
ω

D

To solve the inverse problem, we minimize the functional:

J(p) =
1
2

∫ T

0

∫
ω

|u(p)− uobs |2 dx dt +
α

2

∫
B

|∇p|2 dx ,

with p the parameter to reconstruct, such that: c2(x) = c2
0 + p(x)χB(x)

using
optimize-then-discretize reduced-space approach
BFGS algorithm
finite elements method

Marie KRAY (Univ. Basel) Wave Splitting Banff 2016 28 / 34



Steps 2 and 3, in short
Step 3: Adaptive Eigenspace Inversion

Adaptive process3:

From an initial guess p(0), look for parameter p in the space spanned by
the K first eigenfunctions of the elliptic operator:

p(x) =
K∑
i=1

piφi (x), with

{
−∇ · (A(x)∇φi ) = λiφi in B,

φi = 0 on ∂B.

Matrix A is chosen with respect to the result obtained from the previous
iteration:

A(x) =
1

|∇p(0)(x)|q
Id .

+ Mesh adaptation

3M. de Buhan, M. Kray. A new approach to solve the inverse scattering problem for waves: combining the
TRAC and the Adaptive Inversion methods. Inverse Problems, 29(8), 2013.
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Steps 2 and 3, in short
Step 3: Adaptive Eigenspace Inversion

Reconstruction of a fish: (from [de Buhan, K. 2013]) et bla bla bla pour
completer la ligne

(a) (b) (c)

(a) Exact propagation speed in B
(b) Reconstruction with AI from data on ω

(c) Final mesh through adaptative process

Marie KRAY (Univ. Basel) Wave Splitting Banff 2016 30 / 34
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Conclusion
.

Time-dependent Wave Splitting and Source Separation

New partial differential equation

on a submanifold Γ

in the time-dependent domain
local in space and time
independent on the frequency spectrum

Method extendable to:

2 or more scatterers
vector-valued wave equations from electromagnetics and elasticity
improved accuracy with higher order absorbing boundary condition
(more terms in the progressive wave expansion)
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Conclusion
.

Wave Splitting and adaptive eigenspace inversion
for time-dependent inverse problems

Procedure in 3 steps:

1 split the total wave field to recover the incident wave field, necessary
for the optimization process

2 incident and scattered wave fields reconstructed from split data by
using the TRAC method

3 adaptive eigenspace inversion to solve the inverse problem from the
reconstructed data (in progress)
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