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BIRS Banff, January 21, 2016.
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Introduction

Boundary integral formulation of wave equations

Let Ω ⊂ RD , D = 2, 3, be a bounded Lipschitz domain with boundary ∂Ω
and (unbounded) complement Ωc = RD\Ω.
In the particular case α ≥ 0, let u be the solution to the dissipative wave
equation

∂2
t u(t, x) + α∂tu(t, x)−∆u(t, x) = 0, t ∈ [0,T ], x ∈ RD \ ∂Ω

u(t, x) = g(t, x), t ∈ [0,T ], x ∈ ∂Ω

u(0, x) = ∂tu(0, x) = 0, x ∈ RD \ ∂Ω.

Then u can be represented as a retarded single-layer potential

u(x , t) =

∫ t

0

∫
∂Ω

k (t − s, |x − y |)φ(y , s) dyds, x ∈ RD \ ∂Ω, 0 < t < T .

where φ is the solution of∫ t

0

∫
∂Ω

k(t − s, |x − y |)φ(y , s) dyds = g(x , t), x ∈ ∂Ω, 0 < t < T .
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Introduction

The transfer function

Explicit formulas for k(t, d) are complicated or even unavailable but the
Laplace transform of k(·, d) is easily written down explicitly

K (λ, d) =


1

2π
K0

(√
λ2 + αλ d

)
, D = 2

e−
√
λ2+αλd

4πd
, D = 3,

where K0 is a modified Bessel function.

For α = 0 it is

k(t, d) =


δ(t − d)

4πd
, D = 3,

H(t − d)

2π
√
t2 − d2

, D = 2.

Whereas for D = 3 the support of k is the time-cone t = |x |, for D = 2 it is
t > |x | and the decay is slow in t. However this infinite tail is smooth.
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Runge–Kutta Convolution Quadrature

Abstract setting for applying Convolution Quadrature

Evaluate c (or solve for φ) such that

c(t) =

∫ t

0

k(t − s)φ(s) ds,

where for B and D normed vector spaces,

k(t) : B → D, t ∈ [0,T ],

φ : [0,T ]→ B

c = K (∂t)φ : [0,T ]→ D,

The transfer operator , K (λ) : B → D, Re z ≥ σ0, is analytic and satisfies

‖K (λ)‖ ≤ C |λ|µ, Reλ ≥ σ0,

for some C > 0 and µ ∈ R.

M. López-Fernández. U. La Sapienza, Rome Fast and oblivious CQ for wave equations 4 / 20



Runge–Kutta Convolution Quadrature

Abstract setting for applying Convolution Quadrature

Evaluate c (or solve for φ) such that

c(t) =

∫ t

0

k(t − s)φ(s) ds,

where for B and D normed vector spaces,

k(t) : B → D, t ∈ [0,T ],

φ : [0,T ]→ B

c = K (∂t)φ : [0,T ]→ D,

The transfer operator , K (λ) : B → D, Re z ≥ σ0, is analytic and satisfies

‖K (λ)‖ ≤ C |λ|µ, Reλ ≥ σ0,

for some C > 0 and µ ∈ R.
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Runge–Kutta Convolution Quadrature

Runge–Kutta Convolution Quadrature (CQ)

Choose an L-stable Runge–Kutta method of s stages and Butcher tableau
A = (aij)

s
i,j=1 ∈ Rs×s , b = (bi )

s
i=1 ∈ Rs and c = (cj)

s
j=1 ∈ [0, 1]s .

The CQ based on this Runge–Kutta method approximates∫ tn

0

k(tn − τ)φ(τ) dτ ≈
n∑

j=0

ωn−j · φj

where φj = (φ(tj + cih))si=1 and vector-valued weights ωn−j , computed in
terms of K , b and A.

Lubich & Ostermann 1993, Banjai & Lubich 2011
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Contour integral representation of the CQ weights

Contour integral representation of the CQ weights

The CQ weights can be written as

ωn =
h

2πi

∫
Γ

K (λ)en(hλ) dλ,

with
en(z) = r(z)nbT (I − zA)−1, n ≥ 0,

and r(z) the stability function of the Runge–Kutta method

r(z) = 1 + zbT (I− zA)−11

The integration contour Γ is in principle closed, counter-clockwise oriented,
and surrounds the poles of en(hλ).

Γ can be conveniently deformed according to the properties of K (λ).

If K is sectorial Γ can be chosen as the left branch of a hyperbola, beginning
and ending in the left half plane. Related with the numerical inversion of the
Laplace transform and heavily used to design fast and oblivious algorithms.
(Lubich, Schädle, Palencia, MLF, 2005-2008)
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Contour integral representation of the CQ weights

Sectorial Laplace transforms

We say that a mapping G (λ) is sectorial if

G is analytic in a sector | arg(λ− σ)| < π − δ, for 0 < δ < π
2 ,

and in this sector |G (λ)| ≤ M|λ− σ|µ, for some M, µ ∈ R.

δδδ
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Fast and Oblivious Convolution Quadrature

Fast and oblivious convolution quadrature

Based on a very efficient quadrature approximation of the CQ weights, a
smart splitting of the sums in

n∑
j=0

ωn−j · φj ,

for n = 1, . . . ,N, and a sophisticated organization of the computations and
bookkeeping. Lubich & Schädle 2002

Features

It reduces the complexity of a direct implementation of CQ from
O(N2) to O (| log(ε)|N log(N))

(like modern implementations of CQ for wave problems based on FFT
Banjai, Sauter 2008)

The number of evaluations of the transfer operator K is reduced from
O(N) to O (| log(ε)| log(N))

The memory requirements are also reduced from O(N) to
O (| log(ε)| log(N))
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Fast and Oblivious Convolution Quadrature

Key estimates for 2D and damped wave problems

In Banjai & Grüne 2012 it was noticed that

∣∣eλdK (λ, d)
∣∣ ≤

 C (d), D = 3, α ≥ 0, | arg(λ)| < π

C (d , δ)|λ|−1/2, D = 2, α = 0, | arg(λ)| < π − δ,

for any 0 ≤ δ < π/2.

Thus eλdK (λ, d) as a function of λ is sectorial

How to exploit this property?
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In Banjai & Grüne 2012 it was noticed that

∣∣eλdK (λ, d)
∣∣ ≤

 C (d), D = 3, α ≥ 0, | arg(λ)| < π

C (d , δ)|λ|−1/2, D = 2, α = 0, | arg(λ)| < π − δ,

for any 0 ≤ δ < π/2.

Thus eλdK (λ, d) as a function of λ is sectorial

How to exploit this property?
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Computation of the weights Choice of contour

Our contour

Our K is not sectorial. The integral along the (infinite) left branch of a
hyperbola is divergent.

eλdK (λ, d) is sectorial for every d . (Notice that ωn = ωn(d)).
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Computation of the weights Choice of contour

Parameterization and estimates of stability function

We parameterize the finite section of the hyperbola in the picture as

Γ0 = νϕ([−a, a]), ϕ(x) = 1− sin(α− ix), ν > 0.

Γ0 begins and ends in the left-half complex plane provided that

Reϕ(a) = (1− sinα cosh a) < 0 ⇐⇒ cosh a > 1/ sinα.

Technical Lemma

Let

γ(ξ) = inf
−ξ≤Re z≤0

log |r(z)|
Re z

.

Then γ(ξ) ∈ (0, 1] for ξ > 0, it monotonically increases as ξ → 0 and

|r(z)| ≤ |eγ(ξ)z |,

for all z in the strip −ξ ≤ <z ≤ 0.
Further, there exists ρ > 0 such that |r(z)| ≤ |e2z | for all z in the strip
0 ≤ Re z ≤ ρ.
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Computation of the weights Choice of contour

Truncation error

Proposition

Let d , δ > 0 and µ be given from the sectorial estimate of eλdK (λ, d).

Let a and α ∈ (0, π/2− δ) be given such that cosh a > 1/ sinα.

Then for h, ν0 > 0, m > µ, 0 < ν ≤ ν0 and tn−m > d/γ(ξ) with
ξ = hν0|Reϕ(a)|,∣∣∣∣ωn(d)− h

2πi

∫
Γ0

K (λ, d)en(λh) dλ

∣∣∣∣ ≤ C |νϕ(a)|µ−mh−meν Reϕ(a)(γ(ξ)tn−m−d),

where C = const · C (d), with C (d) in the estimate of eλdK (λ, d).
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Computation of the weights Trapezoidal quadrature

Trapezoidal Quadrature on [−a, a]

Lemma

Let f be analytic and bounded as |f (z)| ≤ M for

z ∈ Rτ0 = {w ∈ C : −a− τ0 ≤ Rew ≤ a + τ0, −b < Imw < b}

and some τ0 > 0. Further, let

I =

∫ a

−a
f (x)dx , IL =

a

L

L∑
k=−L

f (xk),

where xk = kτ , τ = a/L and 0 < τ ≤ τ0. Then

|I − IL| ≤
2M

e2πb/τ − 1
+

log 2

π
τ sup

y∈[−b,b]

|gτ/2(y)|,

where gτ/2(y) = f (a + τ/2 + iy)− f (−a− τ/2 + iy).

The proof is a modification of the one in Javed & Trefethen 2014
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Computation of the weights Trapezoidal quadrature

Total error estimate in the approximation of the weights

We approximate the CQ weight ωn(d) by applying trapezoidal quadrature to

h

2πi

∫
Γ0

K (λ, d)en(hλ) dλ =
νh

2πi

∫ a

−a
K (νϕ(x), d)en(hνhϕ(x))ϕ′(x) dx

with L quadrature points and nodes xk = kτ . Denote the error by ErrL.

Theorem
Under technical assumptions and with ξ the left most point of

hνϕ([−a, a] + i[−b, b]), with 0 < b < min(α, π/2− (δ + α))

we can bound

|ErrL| ≤ C

(
h

e2tnν

e2πb/τ − 1
+ (1 + τ) (hν cosh a)−m eν(1−sin(α−b) cosh a)(γ(ξ)tn−m−d)

)
,

with m = dµe .
We borrow many estimates from MLF & Palencia 2005, MLF, Palencia &
Schädle 2006
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Computation of the weights Parameter choice

Uniform error estimate and parameter choice

Given Λ ≥ 1 and n0 ≥ 1, the same contour can be used to compute all CQ
weights ωn(d), for n0 ≤ n ≤ Λn0. The estimate is also uniform in
0 ≤ d ≤ γ(ξ)t0.

Corollary

For every θ ∈ (0, 1), the following choice of parameters

τ =
a(θ)

L
ν =

πbLθ

Λt0a(θ)
.

with

a(θ) = acosh

(
γ(ξ)(1− D)θ + 2Λ(1− θ)

γ(ξ)(1− D)θ sin(α− b)

)
yields the uniform error estimate

|ErrL| ≤ C exp

(
−2πbL(1− θ)

a(θ)

)
,

where C includes all non exponentially growing terms in the bound.
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)
yields the uniform error estimate

|ErrL| ≤ C exp

(
−2πbL(1− θ)

a(θ)

)
,

where C includes all non exponentially growing terms in the bound.
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Computation of the weights Parameter choice

In practice

We have many parameters and do not optimize for them all.

We prescribe reasonable α, b and γ = γ(ξ∗) for some ξ∗.

We then compute θ∗ by minimizing

ε(θ) = exp

(
−2πbL(1− θ)

a(θ)

)
.

Then the rest of parameters follow and the dependence on Λ is very mild.

The actual error will be bounded from below by

|ErrL| ≥ C exp(−ξ∗(γ(ξ∗)tn0−m − d))

No contradiction with our theory, since with this strategy we are ignoring
the (highly nonlinear) relation between a = a(θ∗) and ξ∗.
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Numerical results

Effective approximation of the weights

We consider
K (λ, d) = K0(λd)

where K0(·) is a modified Bessel function. Here δ = 0, µ = −1/2.
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Approximation error along intervals [hn0 + hB`, hn0 + 2hB`+1] with B = 10,
L = 10 (up), and B = 5, L = 15 (down).
Left: d = 0.01, Right: d = 0.1.
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Numerical results

Wave equation in 2D, no damping (α = 0)

We take Ω a disk of radius one and g(x , t) = t4e−2t . T = 40, N = 400
time steps, M = 100 patches for the spatial discretization.
Basis B = 5, offset n0 = dd/(hγ(ξ))e, two distance classes: d ∈ [0,

√
2] or

d ∈ [
√

2, 2], Fixed γ(ξ) = 0.6.
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Numerical results

Evolution of the error for different γ

Fixed L = 26.
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Numerical results

Error behaviour w.r.t. L
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