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Trefftz methods

Considera PDE Lu =0 thatis: (i) linear, (i) homogeneous
(RHS=0), (iii) with piecewise constant coefficients.

Trefffz methods are finite element schemes such that
test and trial functions are solutions of the PDE
in each element K of the mesh 7, i.e..

V, C T(Th) = {u €L2(Q): Lv=0ineachK e Th}.

E.g.: piecewise harmonic polynomials if Lu = Au.
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Considera PDE Lu =0 thatis: (i) linear, (i) homogeneous
(RHS=0), (iii) with piecewise constant coefficients.

Trefffz methods are finite element schemes such that
test and trial functions are solutions of the PDE
in each element K of the mesh 7, i.e..

V, C T(Th) = {u €L2(Q): Lv=0ineachK e Th}.

E.g.: piecewise harmonic polynomials if Lu = Au.

Our main interest is in wave propagation, in:

» Frequency domain, Helmholtz eq. “Au—wu=0

lot of work done, h/p/hp-theory, extended to other eq.s;
(recent survey: Hiptmair, AM, Perugia, arXiv:1506.04521)

» Time domain, wave equation —AU+ 5L U=0
Trefftz methods are in space-time.



Trefftz methods for wave equation

Why Trefftz methods? Comparing with standard DG,
» befter accuracy per DOFs and higher convergence orders;
» PDE properties “known” by discrete space, e.g. dispersion;
» lower dimensional quadrature needed;
» simpler and more flexible;
» adapted bases and (one day) adaptivity. ..

No typical drawbacks of time-harmonic Trefftz (ill-cond., quad.).
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Why Trefftz methods? Comparing with standard DG,
» befter accuracy per DOFs and higher convergence orders;
» PDE properties “known” by discrete space, e.g. dispersion;
» lower dimensional quadrature needed;
» simpler and more flexible;
» adapted bases and (one day) adaptivity. ..

No typical drawbacks of time-harmonic Trefftz (ill-cond., quad.).

Existing works on Trefftz for fime-domain wave equation:
» MACIAG, SOKALA 2005-2011, Trefftz on a single element;

» PETERSEN, FARHAT, TEZAUR, WANG 2009&2014,
DG with Lagrange multipliers;

» EGGER, KRETZSCHMAR, SCHNEPP, TSUKERMAN, WEILAND
3x2014-2015, Maxwell equations;
KRETZSCHMAR, MOIOLA, PERUGIA, SCHNEPP 2x2015, analysis;

» BANJAY, GEORGOULIS, LIJOKA, interior penalty-DG.



Simplest basis: Trefftz polynomials

Consider wave equation —AU + C—IZU” = 0in K c R"! (c const.).

FordeR", |d|=1,f:R — Rsmooth, f(d-x—ct) issolution.



Simplest basis: Trefftz polynomials

Consider wave equation —AU + C—IZU” = 0in K c R"! (c const.).

FordeR", |d|=1,f:R — Rsmooth, f(d-x—ct) issolution.
Choose Trefftz space of polynomials of deg. < p on element K:

TP(K) : = {v e PP(K), —Av+c %V =0}
0<j<p,

= span {(dj,f ‘X —cty, 1<e<L(j,n)

}, with dimension
dim (T7(K)) =("+171) 22 =Opso0 (P") < dim (PP(K))=(*11)=Opsoo (p" )

Taylor polynomial of (smooth) U belongs to TP (K).



Simplest basis: Trefftz polynomials

Consider wave equation —AU + C—IZU” = 0in K c R"! (c const.).

FordeR", |d|=1,f:R — Rsmooth, f(d-x—ct) issolution.

Choose Trefftz space of polynomials of deg. < p on element K:
TP(K) : = {v e PP(K), —Av+c %V =0}

0<j<p,
7 1<e<L(j,n)

span {(dj,g x—ct) } with dimension

dim (T7(K))=("371) 2" =Oposoo (P") < dim (P (K)) =("111") =Opsoo (P" )

Taylor polynomial of (smooth) U belongs to TP (K).

Choice of directions d; ;:  (corresponding to homog. polyn. deg. j)
» n =1, left/right directions d;; = 1,d; 2= -1, T’(K) =span{(x + ct}};

» n=2,anydistinct {d;¢}.=1,...2+1 give a basis;

.....

> n=3, (d;, x— cty linearly indep. <= [YF(d)¢)]n=jm;e full rank.



Initial-boundary value problem

First order initial-boundary value problem (Dirichlet): find (v, o)

vw%:o iNQ=Qx(0,T) cR*"", neN,
1 ov .

V-o+ —= =9t =0 in Q,

U(-,O) = Vo, 0'(-,0) =09 ONK,

v(x,-)=g on 992 x (0, T).

Equivalent fo —~AU + ¢ 22U = 0 sefting v = 2 and o = ~V U,
Velocity ¢ piecewise constant. QCR? LIpSChITZ bounded.

» Neumann o -n = g & Robin 2v—¢-n = gBCs (v),
» Maxwell equations (v),

Extensions: » elasticity,
» 15t order Friedrichs’ systems,
» Maxwell equations in dispersive materials. . .



Space-time mesh and assumptions
Introduce space-time polytopic mesh 7;, on Q.
Assume: ¢ = c(x) constant in elements.
Assume: each face F = dK; N 9Ky with normal (n¥, nf) is either
» space-like: ¢n}| < nk, denote F C F;°9°°, or
» fime-like: nl, = 0, denote F c Flime,
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Space-time mesh and assumptions

Introduce space-time polytopic mesh 7;, on Q.

Assume: ¢ = c(x) constant in elements.

Assume: each face F = dK; N 0Ky with normal (n, nk) is either
» space-like: ¢n}| < nk, denote F C F;°9°°, or
» fime-like: nl, = 0, denote F c Flime,

t T DG notation:
T h {w} = Wik, —;—w‘KZ7 () = Tk, ;T‘K27
: [l = w),, mF, + w0,
. [Tl = Ty, - B, + 7, -0,
—H \\ [w]e == wy, nig + Wy Nk, = (W~ wHng,
| K ] \\' [T]e == T My + T, N, = (77 —7)np,
0 Fri=0x{0},  Fn:=Qx{T},

Fime  FPeC F—oax[0,TI.



DG elemental equation and numerical fluxes
Multiply PDEs with test (w, ) e H' (T;)' ™", integrate by parts in K:

SAEN 12855)”'( M )) axa

D = ~ 1 .
0K




DG elemental equation and numerical fluxes
Multiply PDEs with test (w, 7)€ H! (771)””, infegrate by parts in K:

ow or
//( 28t)+a-( a—FVw ))dxdt
=0 |f (w, T) Trefftz =0, if (w, T) Trefftz

+/ ((67+&w)~n’f<+<a T+ = ! vw) %)dS—O.
Jok

TDG eq. on 1 element

Here v, & are numerical fluxes, approximations of traces of (v, o)
on skeleton defined as:



DG elemental equation and numerical fluxes
Multiply PDEs with test (w, ) e H' (T;)' ™", integrate by parts in K:

1 ow or
//( 28t)+0'( at—FVw ))dxdt
=0 |f (w, T) Trefftz =0, if (w, T) Trefftz

' ~ . 1
+/ ((vr+aw)~nj§+<a T+ — vw) }()dSO.
Jok

TDG eq. on 1 element

Here v, o are numerical fluxes, approximations of fraces of (v, o)

on skeleton defined as: o, B € L (Fime | F0)
Ul;p a;p on ]_—;.chuce7
Php O hp on Fr,

Onp 1= | Lo Thp =4 00 on F?,
{Uhp}} + fg[[”hp]]N {Uhp}} + Q[[Uhp]]N on ]:;rlime’
J o —a(v—gmg  on F.

a = 8 =0 — KRETZSCHMAR-S.-T.-W., af > % — MONK=RICHTER.



TDG formulation

Trefftz space  T(Ty) := {(w, ) € L2(Q), (wlk, T|x) € H (K)"*™,

or 0w
Vw+ oL =0, V.rtcto 7OVKeTh}.

Choosing any V,(7,) € T(7x). summing over K, we write TDG as:

Seek (Unp, onp) € Vp(Tr) 8.1, V(w,T) € Vp(Th),

A(Vnp, ohp; W, T) = £(Ww, T) where
A 2 = Onp 111 . _ . ds
(Vnp, Ohp; W, T) := F;puce( o + 0y [Tl + V[Tl + oy, - [[w]]N)

+ [ ({0} + onh - [l -+ ool - [y + Blowlnrn) 45

+/T(c_2vhpw+o-hp~7-) dS+/ (ohp - Mo + avyy) wdS,
F,

(o]
h ]:h

(w, 7) ::/ (c—2v0w+ao.r)ds+/ glaw— T -ng) dS.
Fi Fo

0
h h



Global, implicit and explicit schemes

1 Trefftz-DG formulation is global in space-time domain Q:
huge linear system! Might be good for adaptivity.
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huge linear system! Might be good for adaptivity.

2 If mesh is partitioned in time-slabs

0 x (ti—1, ), a system for each time-slab can
be solved sequentially: implicit method.
Corresponds to block lower-triangular matrix.
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Global, implicit and explicit schemes

1 Trefftz-DG formulation is global in space-time domain Q:
huge linear system! Might be good for adaptivity.

2 If mesh is partitioned in time-slabs t}
Q x (ti-1,t), asystem for each time-slab can [+ zz
be solved sequentially: implicit method. 1 S
Corresponds to block lower-triangular matrix. ‘ xl
3 If mesh is suitably chosen, Trefftz-DG solution
can be computed with a sequence of small
local systems: (semi)-explicit method.
Smaller matrix blocks; allows parallelism!

X

“Tent pitching algorithm” of UNGOR-SHEFFER,
FALK=RICHTER, MONK—RICHTER, GOPALAKRISHNAN—MONK-SEPULVEDA. . .

Versions 1-2-3 are algebraically equivalent (on the same mesh).



Tent-pitched elements

Tent-pitched elements/patches obtained from regular space
meshes in 2+1D give parallelepipeds or octahedra+tetrahedra:

Trefftz requires quadrature on faces only: element shapes do
not matter much, simplices around a tent pole can be
considered a single element.



Relation with UWVF and finite differences

With ac = f/c =6 = 1/2, TDG operator reads (Id — F*II),
F isometry, T “trace-flipping”, as in Cessenat-Despres’ UWVF.
True in 1+1D; only formally because of a trace issue in n+1D. ..



Relation with UWVF and finite differences

With ac = f/c =6 = 1/2, TDG operator reads (Id — F*II),
F isometry, T “trace-flipping”, as in Cessenat-Despres’ UWVF.
True in 1+1D; only formally because of a trace issue in n+1D. ..

In 1+1D, without BCs, with piecewise constant basis, on
Cartesian-product mesh, (implicit) TDG reads:

n__ n—1 n n n n n t

15y T = %=1 _ o Ym1 U — 20 = T
2 + = ahx 2 ) K= K K
C ht 2hx hx 1
K
n_ n-—1 n o _ ..n n n o n J
S N 5 T o R o B £ B
- X
he 2hy h? '

On a uniform rhombic mesh, with piecewise constant basis,
(explicit) TDG is Lax-Friedrichs:

t
n—1 n—1 n—1 n—1
n_ b Uy, 2y, Zit1 — 9
y=———F"— —Ch—pFp—,
2 2h, @@}
n—1 n—1 n—1 n—1 >‘
ol = J J+r ht J+ J

i
X

J 2 2h, ’



TDG a priori error analysis

Using jumps and averages, define 2 mesh- and flux-dependent

seminorms ||| - |[pc < ||| - [|Ipe+ on HY(Tx)' ™, norms on T(Ty,).
V(v, o), (w,7) € T(Th) : (a, 8> 0)
A, o;v,0) > ||(v,0)||[36 coercivity,
|A(v, 05w, 7)| < 2|||(v,0)ll|pe+ [|[(w, T)||[pe  confinuity,
\

Existence & uniqueness of discrete solution  (only for Trefftz!)
Stability and quasi-optimality:

U—UVpp, 0 —O DGSS inf UV— Whp, 0 —Th +.
0= vmp.o~ew)llioc <3 inf (0~ wnp 07wyl

Energy dissipation: (ifg=0)
3 Jory (€200, +lonpl?) dx < 3 [ 16y (c720F + [00|?) dx.



Stability and error bound in L?(Q) norm

Error bound in space-time L?(Q) norm follows if we have

IS

gy Iz < Cmapllitwrmllios ¥(w.7) € T(T).



Stability and error bound in L?(Q) norm

Error bound in space-time L?(Q) norm follows if we have

IS

12(9) + 17l 2 @yn < CTap (W, T)lllpe  Y(w, T) € T(Th).

Using MONK-WANG “duality” technigue, this holds if,
for the auxiliary inhomogeneous IBVP

Vz+0(/0t=® inQ, @®eclL?Q",
V-¢C+c20z/0t=1) inQ, v elL?*Q),
z(-,0) =0, ¢(-,0)=0 on ,

z(x,-)=0 on 90 x (0,T),

the following stability bound holds:

2 2 2

¢ -mi

1
a2

+2

z
+
122U ET)

1
ﬁz Lz(]:;lime)

2
< Clrivam) (1112 gy + e li2 gy ) v(@,v) € L@

1
n?¢

c
L2(ERUEDR L2(Fime D)



When does “adjoint stability” hold?

1 1D, constant ¢, decomposing solution in left and right waves,
C ~ T(N, + N;)'/? on a Cartesian-product N, x N; mesh.



When does “adjoint stability” hold?

1 1D, constant ¢, decomposing solution in left and right waves,
C ~ T(N, + N;)'/? on a Cartesian-product N, x N; mesh.

2 1D, general ¢, with Gronwall + energy + integration by parts +
ah* bh*

QKiNK, = > x 2 px U Bikink, = ik kT
min{ci hg , ¢y, g, min{hg , hi, }

= C~ (1/maxger, {hE} +eTNP2  )1/2, hp-type bound.

interfaces



When does “adjoint stability” hold?

1 1D, constant ¢, decomposing solution in left and right waves,
C ~ T(N, + N;)'/? on a Cartesian-product N, x N; mesh.

2 1D, general ¢, with Gronwall + energy + integration by parts +
ah* bh*

. Bikinks = —Trx X1
min{c hg,c, hg,} |[KiNKs min{hg, Ry, }

YKiNKy =

= C~ (1/maxger, {hE} +eTNP2  )1/2, hp-type bound.

interfaces

3 nD, no time-like faces (FfMe = @), impedance BCs only,
= C~ Th[l/2 on uniform meshes.

All bounding constants are explicit.
For general case, need bound on traces of z, ¢ - n, in L2(Fjime),



hp convergence bounds in 1+1D (and h in n+1D)

We prove fully-explicit hp best-approximation bounds in 1+1D.
Combined with quasi-optimality, give convergence bounds:

[|(v — Uhp, o — omp)||IDG
t

= \1/—25K€Th (6( +%) +8c§K<1+C%>>1/2(e/2);2—’§

(R + chl)*<+2
o

¢k = [[max{ac; 1/ac; B/c; ¢/BH| < sKk)) 1 <skg <pk

[0/l . gy + 10 garcrto gy )-

» Exponential convergence for analytic solutions:
~ exp(—b#DOFs) instead of exp(—b/#DOFs).



hp convergence bounds in 1+1D (and h in n+1D)

We prove fully-explicit hp best-approximation bounds in 1+1D.
Combined with quasi-optimality, give convergence bounds:

(v = Vhp, o = op)llIDG
t

= \1/—25K€Th (6( +%) +8c§K<1+C%>)1/2(e/2);2—’§

(R + chl)*<+2
o

¢k = [[max{ac; 1/ac; B/c; ¢/BH| < sKk)) 1 <skg <pk

[0/l . gy + 10 garcrto gy )-

» Exponential convergence for analytic solutions:
~ exp(—b#DOFs) instead of exp(—b/#DOFs).

» For n > 1, approximationin pis hard, in h follows from Taylor:
—Au+c?u" =0, ue H*"'(K), n=2,83= P T’(K)s.t. VO<j<p

Ju— Pl < 4(1+0)"p02 e fulperx | (Kxeshaped wit By,



Numerical example

Gaussian wave, uniform mesh of squares, p-convergence:

Global Relative Error eg

1071

1072

1073

104

Non-Trefftz — & —
Trefftz —o

Non-Trefitz — @ —|ifm
Trefftz —a

Non-Trefftz — @ —
Trefftz —o

o \.\ D;\
\
N N
N \
=, LN o e
= == N
1.45 S \\ 1 = \\
5 ~
o o o =
> 2N .
N N S
N o * 1 o Y
S ~
0 1 2 3 4 51 2 4 6 70 10 20 30 40

Polynomial degree

3 5 o
V#DoF (per Cell)

#DoF (per Cell)

50

Very weak dependence on flux parameters, even for a, 5 = 0.



Symmetric hyperbolic systems
As in MONK-RICHTER: piecewise-constant A > 0, constant A;

Au, + Zl_ Aug, =0  inQx(0,7), Dlor = 3™ Ay
b T KT
J

D—Nu= on 92 x (0, T
( ju=g x (0, T), +conditions on N.

u=1uy on Q x {0},

Decomposition Mok := nkA + >, A = My + My such that
Mt >0, M~ <0, I\/I}t1 +Mg, =00n 0K, N9dK2, leadsto

A, w) = / u; - My (W) — wy) dS+/ u-MwdS
Ky Ky Y OK1N0Ky Fr

+l/ (D+N)u-wds,
2 0% (0,T)

é(w):—/ uo~deS—l/ g -wdS.
i

Q% (0,T)
M+t — M~
lllall[pe :==A(w,w) = Y / (W — ) ——5——(w —u3)dS
Ky Ky OK1NOKy

+ _ —
+/ u-uudS—kl/ u-NudsS.
Frurp 2 2 80 x(0,T)



Maxwell’'s equations

O(yuH) oE) 541
VXE+ ——+-+ 9 =0, V xH-— ot =0 IN@QCR™,
ny x E=nf x g(x,t) Dirichlet/PEC BCs,
— (v— — v+
{Mt ' (vx V') . (tangential) jJumps.
[Vlr :=n% x v, +nk xv,

Trefftz-DG formulation defined by:

Am (Ehp’ Hyy; v, w) :/

space
]:h

+ / T(eEhp -V + pHpy, - w) dS + / . (Hpp + a(nfy x Epp)) - (0§ x v)dS
]:h ]:h

4 [ (— AB - (90 + {80} (9] + o [Brylr - [v)r + B[ED I - [w]x) A,

(v, W) = / (eEp - v + uHg -W)dS+/ (n§ xg8) - (—w+a(n§ x v))ds.
Fh TR

Well-posedness and stability identical fo wave equation.

Explicit approximation boundsin h. Impedance BCs also fine.

(EE,;p. [V]e + 1M, - [w]e — Ep - [Wlr + H, - [[v]]T> ds



Extensions and open problems

vvyyVvyyvVyy

vvyyy

More general space-time meshes (not aligned to t);

non/less dissipative methods (is our dissipation too much?);

analysis of non-penalised methods (o« = 8 = 0);
L? stability in more general cases;

Maxwell, elasticity, first-order hyperbolic systems,
dispersive/Drude-type models for plasmas, ...

Trefftz hp-approximation theory in dimensions > 1;

(directional) adaptivity;

other bases: non-polynomial, frigonometric, directional. . .;



Extensions and open problems

vvyyVvyyvVyy

vvyyy

More general space-time meshes (not aligned to t);

non/less dissipative methods (is our dissipation too much?);

analysis of non-penalised methods (o« = 8 = 0);
L? stability in more general cases;

Maxwell, elasticity, first-order hyperbolic systems,
dispersive/Drude-type models for plasmas, ...

Trefftz hp-approximation theory in dimensions > 1;

(directional) adaptivity;

Thank youl!

other bases: non-polynomial, frigonometric, directional. . .;
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