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Motivation: acoustic scattering

Problem: a'(x, t) is incident on I for t > 0 — find the scattered field a°(x, t)

scattered field a®

L ~ X\

-
incident field ~
al

£y
e PDE: aj, = Aa® in Q (wave speed is ¢ = 1);
eBC:a*+a =0onT

e TDBIE: a° can be obtained from surface potential u:

1 / u(x’, t—|x"—x|)
41 r

- dox' = —a'(x,t) xe€Tl, t>0
X x|
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Approx TDBIE in time & space™

n
Z QTMU"™™=2a", n=1:Nr ("time Galerkin — see later)
m=0
(U" € RNs is spatial approx of u at/near t” = nh, Q™ are matrices)

n
time-stepping scheme: Q°U" =a" — Z QT Y™m"
m=1
e Choose space mesh size ~ time step h, so N7 ~ N, Ng ~ N2
e Sparsity of matrices Q™ given by (effective) support of time basis functions:

e Galerkin in time: time BFs are local

e Convolution quadrature (CQ) in time: scheme is very stable, but effective
support of BFs is greater and increases with m

e Comp complexity — extra power of V/N for both setup & run times for CQ
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(U" € RNs is spatial approx of u at/near t” = nh, Q™ are matrices)

n
time-stepping scheme: Q°U" =a" — Z QT Y™m"
m=1
e Choose space mesh size ~ time step h, so N7 ~ N, Ng ~ N2
e Sparsity of matrices Q™ given by (effective) support of time basis functions:

e Galerkin in time: time BFs are local

e Convolution quadrature (CQ) in time: scheme is very stable, but effective
support of BFs is greater and increases with m

e Comp complexity — extra power of V/N for both setup & run times for CQ

o ldeal: local time BFs with stability of CQ: “convolution spline”
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Time basis functions

Size of the basis functions (ps(t) and (pzs(t)
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Basis functions for CQ (BDF2) and cubic splines

e TDBIE comp complexity — extra power of v/N for both setup & run times

for CQ
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“Convolution spline” approx in time

Derive for convolution Volterra integral equation (VIE):

/0 K(7) u(t—7) dr = a(t)

Idea: construct a backwards-in-time approx in terms of local basis
functions — gives sparse Q™ matrices for TDBIEs
Approx is:
u(t, — t) Z Un-m @m(t/h) NOT u(t)~ > udi(t/h)
m=0 k

Basis functions ¢,,(t) are cubic B-splines with parabolic runout conditions at
t = 0 (so translates for m > 3)

New results for VIE: stability and 4th order convergence for kernels K which
are piecewise smooth (can be discontinuous)
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Simple VIE example

t - _ 17
/0 K(r) u(t—7)dr = a(t), where K(t)—{ ;

t<L
otherwise

Lt/L]
exact solution: u(t) = Z a(t—kL)
k=0
s
0 L 2L
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VIE approx: key Gronwall result

Standard Gronwall:

n—1
xn§a+bej = x,,§a(1+b)”§aeb”
j=0
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VIE approx: key Gronwall result

Standard Gronwall:

n—1
xn§a+bej = x,,§a(1+b)”§aeb”
j=0

Extension — include contribution from M steps back:

n—1
xp<a+b Zx,-+cx,,_M — x,<a(l+b)"(1+ c)l/M]
j=0

— Can show that convolution spline scheme is stable and 4th order accurate when
kernel K is discontinuous

Penny Davies (Strathclyde) BIRS Jan 2016 6/18



L error

Numerical results
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Scattering from unit sphere S

scattered field a°

T
T
T

incident field
ai

4

e Spherical harmonic expansion: (R = |x|, X = x/R)

d(x,t) =) a) (R, ) V(%)

¢,m

e Y, are eigenfunctions of the single layer potential operator on S (e.g.
Nédélec) = spherical harmonic representation of u and a*
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Potential v on S

e TDBIE for surface potential u:

1 / u(x’, t—|x"—x|)
s

. dox = —a'(x,t €S, t>0
47 |x"— x| ox 7xt) x

e Spherical harmonic expansion — everything decouples:

A, t)=> A (ROYT(X) = u(xt)= um(t)Y(X)
4,m 4,m
e Separate step-kernel VIE problem for each vy, [Sauter & Veit, 2011]

/0 Ke(r) ugm(t—7) = —a (1, 1),
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Potential v on S

e TDBIE for surface potential u:

1 / u(x’, t—|x"—x|)
s

. dox = —a'(x,t €S, t>0
47 |x"— x| ox 7xt) x

e Spherical harmonic expansion — everything decouples:

A, t)=> A (ROYT(X) = u(xt)= um(t)Y(X)

e Separate step-kernel VIE problem for each vy, [Sauter & Veit, 2011]

t 1 2
; 5 P(1—1¢2/2), t<2
Ko(T Upm(t—T) = —ay m(1,t), Ko(t) = { 2 ’
/0 ( ) ( ) l, ( ) ( ) 0, t>2

(Py is Legendre polynomial) New?
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Scattered field a° from S

2°(x,t) =) ai m(R. 1) Y/(X)

L,m

e Components (t > 2):

1 R+1
. (RE) = — / Po(1— 72/2) g m(t—7)
9 2R R_1 )

1 [? .
where 5 / Po(1 —72/2) upm(t—7) = —ap m(1,t)
0

e Convolution spline approx solution?
e Problem: our error bound for approx u involves ||K;|| =£¢(£+1) ...
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Scattered field a° from S
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Scattered field a° from S

2°(x,t) =) ai m(R. 1) Y/(X)

L,m

e Components (t > 2):

1 R+1
. (RE) = — / Po(1— 72/2) g m(t—7)
’ 2R Jra ’

1 [? .
where 5 / Po(1 —72/2) upm(t—7) = —ap m(1,t)
0

e Convolution spline approx solution?
e Problem: our error bound for approx u involves ||K;|| =£¢(£+1) ...

« Problem ... asan exponential!

o But: scheme works much better than this in practice ...
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Numerical results for VIE solution uy,

Relative error, max norm in time
:
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Degree of kernel function ¢
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Connections: space—time Galerkin and convolution spline

e Ha Duong: TDBIE variational formulation — stability of full space-time
Galerkin approximation

e But Galerkin methods are typically not in time-marching form — very
expensive to implement without modification

e Strategy: find a modified variational formulation with the following
properties.

e its exact and (Galerkin) approx solutions are close to those for the unmodified
version

e its Galerkin approx is equivalent to a convolution spline (time-marching)
scheme

e the CS scheme's basis functions are globally smooth enough to make
quadrature efficient

e Could then use Ha Duong (Galerkin) analysis for convolution spline
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Ha Duong: Galerkin variational formulation

o TDBIE (single layer potential) for surface potential u:

1 )
(Su)(x,t) = o /rW dox = —ai(x,t) xel, teo,T]

e Approx solution in terms of unknowns U}

u(x, t) ~ up(x, t) ZZUkwk ) dn(t/h) € Vy

n=1 k=1

e Galerkin approx uses time differentiated TDBIE Si = —3; not Su = —a;:

T
qh,uh, / /thuhdax dt = / /qhéidgx dt
0 Jr

for each g = ¥j(x) om(t/h) € Vi,
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Galerkin is not usually a time-marching scheme. . .

e It is when ¢,, are piecewise constants in time, but not in general

e Example: ¢,(t/h) = Bi(t/h — m) - translates of 1st order B-spline (hat
functions)

e Resulting linear system for the (¥ € RV is: U° =0,

QU™ 4+ Z Q"U"™™=2a", n=1:Ny—1 (modified at n = N7)
m=0

Picture for N7 = 4 (x is a non-zero block Ns x Ns matrix):

x % 0 0 Ut at
* x % 0 Q2 Fa
* k% ok g3 - §3
%k k% u* ok
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.it can be modified to give a time-marching scheme

e Can either apply Galerkin (Bj in time) to modified variational problem

t = t
a(qn, up; T)+h2 / // an(x, XX y}ﬂ)uh(y ) doxdoydt = Galerkin RHS

where F(r) = By(r/h+ 1/2) = second order B-spline
e Or modify Galerkin scheme using extrapolation U™ ~ 2 U" — y"!

e Both approaches give the same time-marching scheme:

—Q (U 22U+ U+ QT QU =2
m=0
ie. 2" +Q)U"+ (Q'-QY) U”1+ZQ”’U””’:
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Connections: Bj-Galerkin and convolution spline

e Modified Galerkin scheme based on B; (linears) in time:
n
(2Q* + QO) gn + (Ql _ Q*) gnfl + Z ngnfm =3a"
m=2

e Convolution spline scheme with Bs-basis functions also applied to time
differentiated TDBIE Su = —3a'is

R+ @)U+ (- QU™+ QMU =ay

m=2

— same matrices and af ~ 2"
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Connections: Bj-Galerkin and convolution spline

e Modified Galerkin scheme based on B; (linears) in time:
n
(2Q* + QO) gn + (Ql _ Q*) gnfl + Z ngnfm =3a"
m=2

e Convolution spline scheme with Bs-basis functions also applied to time
differentiated TDBIE Su = —4&' is

(2Q* + QO) gn + (Ql . Q*) gn—l + Z ngn—m _ Q,(,j'
m=2
— same matrices and af ~ 2"

e Shown: direct connection with convolution spline scheme with Bs-basis
functions applied to Su = —a', via

Bs(t) = By(t +1/2) — By(t — 1/2)
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Connections: Galerkin and convolution spline

Galerkin time basis || Convolution spline | Conv spline sta-
(app to St = —3') || (app to Su= —a') | ble for VIE?
Bi(t) B,(t) Yes
? Bs(t) Yes
Bs(t) Ba(t) Yes
B3(t) Bﬁ(t) No

Ha Duong: standard (unmodified) Galerkin scheme should be stable
Shown: Modified B;-Galerkin scheme is equivalent to Br-convolution splines

Shown (probably!): exact solutions of standard and modified B; variational
formulation differ by O(h?). Approximate solutions are harder. . .

Bj-convolution spline looks similar to B,-Galerkin, but details are messy
Bs-convolution spline? Fractional spline Galerkin? Petrov-Galerkin method??
Petrov-Galerkin approach: [Elwin van 't Wout et al, 2016]
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Summary

e Volterra IEs: (cubic) convolution spline is stable and 4th order accurate for
discontinuous kernel problems
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e Scattering from S: spherical harmonic decomposition with components
related by

1 [? :
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0
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Summary

Volterra IEs: (cubic) convolution spline is stable and 4th order accurate for
discontinuous kernel problems

Scattering from S: spherical harmonic decomposition with components
related by

1 [? :
5 | Pl =1%/2) uemlt=7) = =2} (1,1
0

Scattering from T': strategy is to exploit connection between convolution
spline and (modified) Galerkin to use Ha Duong stability analysis

Penny Davies (Strathclyde) BIRS Jan 2016 18 / 18



