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the semidiscrete problem

Schrödinger equation

i
∂

∂t
u(x, t) = −∆u(x, t) + V(x)u(x, t) =: Hu, x ∈ Rd, t > 0

u(·, t = 0) = u0.

Theorem (semidiscrete approximation)

Let the potential V be bounded, and let u0 be sufficiently smooth.
Let the semidiscrete approximations un ≈ u(nk) be obtained with
an A-stable RK or multistep method of order q. Then:

‖un − u(nk)‖L2(Rd) . Tk
q‖Hq+1u0‖L2(Rd),

‖un − u(nk)‖H1(Rd) . Tk
q
(
‖Hq+2u0‖L2(Rd) + ‖Hq+1u0‖L2(Rd)

)
.

Proof: follows from rational approximations of semigroups.

J.M. Melenk
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Problem formulation

Schrödinger equation{
i ∂∂tu(x, t) = −∆u(x, t) + V(x)u(x, t) , x ∈ Rd, t ∈ (0,∞)

u(·, t = 0) = u0.

discretization in time using multistep or Runge-Kutta method
⇒ sequence of approximations un ≈ u(nk) for n ≥ 0

in space: FEM → bounded domain Ω

choose bounded domain of interest Ω such that:
potential V ≡ Vext ∈ R outside Ω
suppu0 ⊂ Ω

questions:
what (transparent) boundary conditions to pose for un on ∂Ω?
→ has the form of a DtN operator
how to realize the DtN operator? → FEM-BEM coupling

error and stability analysis?

J.M. Melenk
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Multistep methods

i
∂

∂t
u(x, t) = −∆u(x, t) + V(x)u(x, t)

K-step method is given by coefficients
αj , βj ∈ R, j = 0, . . . ,K

sequence of approximations defined as the solutions of

i

k

K∑
j=0

αju
n−j =

K∑
j=0

βj (−∆ + V)un−j ∀n ≥ K.

J.M. Melenk
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Derivation of the boundary conditions

idea: use the Z-transform: û(z) :=
∑∞

n=0 u
nzn:

set H := −∆ + V

i

k

K∑
j=0

αju
n−j =

K∑
j=0

βjHun−j ∀n ≥ K

→ differential equation for û:(
iδ(z)

k
+ ∆− V

)
û(z) = 0, δ(z) :=

∑K
j=0 αjz

j∑K
j=0 βjz

j

J.M. Melenk
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iδ(z)

k
+ ∆− V

)
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Derivation of the boundary conditions - 1D

in 1 spatial dimension:(
iδ(z)

k
+ ∂2

x − V
)
û(z) = 0

outside of Ω = (xl, xr) the potential V is constant

solution û on (xr,∞) has form

û(z;x) = A+(z) ei
√

i
δ(z)
k
−Vr x +A−(z) e−i

√
i
δ(z)
k
−Vr x

asymptotic behavior û(z)→ 0 for x→∞ implies A− = 0

explicit form of Dirichlet-to-Neumann operator:

DtN û(z) = ∂xû(z) = i

√
i
δ(z)

k
− Vr û(z)

(note: DtN cannot be realized exactly in higher dimensions)
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asymptotic behavior û(z)→ 0 for x→∞ implies A− = 0

explicit form of Dirichlet-to-Neumann operator:
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Derivation of the boundary conditions – 1D

∂xû(z) = i

√
i
δ(z)

k
− Vr û(z)

inverse Z-transform to get ∂xu
n(xr)

make a power series ansatz

∞∑
n=0

ψnz
n := i

√
i
δ(z)

k
− Vr

Cauchy-product formula gives:

∂xu
n(x) =

n∑
k=0

ψku
n−k(x)

J.M. Melenk
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Transparent boundary conditions – Multistep methods 1D

For all n ≥ K, find un such that
i
k

∑K
j=0 αju

n−j =
∑K

j=0 βj
(
−∂2

x + V
)
un−j , x ∈ (xl, xr),

∂xu
n(x) =

∑n
k=0 ψku

n−k(x), x = xr,

analogous b.c. for x = xl

with

∞∑
n=0

ψnz
n := i

√
i
δ(z)

k
− Vr

J.M. Melenk
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Runge-Kutta methods on Rd

@ A-stable multistep methods of order > 2.

Runge-Kutta methods of arbitrarily high order available

m-stage method given by A ∈ Rm×m, b ∈ Rm, c ∈ Rm

approximation at time tn+1 := tn + k given by:

Un
i = un + k

m∑
j=1

aij
(
−iHUn

j

)
, i = 1, . . . ,m,

un+1 = un + k
m∑
j=1

bj
(
−iHUn

j

)
we only consider A-stable methods with regular matrix A.

J.M. Melenk
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RK-method

(I +ikAH)Un = 1un

un+1 = R(∞) + bTA−1Un

RK-method, rewritten

(
−iA−1 + kH

)
Un = und, d = −iA−11

update formula: un+1 = R(∞) + bTA−1Un

J.M. Melenk
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Transparent boundary conditions – RK methods 1D

analogous derivation using the Z-transform technique

Un and un+1 solve
(
−iA−1 + kH

)
Un(x) = un(x)d x ∈ (xl, xr),

∂nU
n(x) =

∑n
j=0 Ψ

(l,r)
j Un−j(x) x ∈ {xl, xr},

un+1 = un + k
∑m

j=1 bj
(
−iHUn

j

)
where

δ(z) :=

(
A+ 1bT

z

1− z

)−1

,

∞∑
n=0

Ψ(l,r)
n zn := i

√
iδ(z)

k
− V(l,r)I, ∀ |z| < 1,

coefficients Ψ
(l,r)
n are now matrices in Cm×m.

possible to show optimal convergence

J.M. Melenk
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From semi discrete to fully discrete – 1D

problem: coefficients Ψk are not known exactly

solution: approximate Cauchy integral by trapezoidal rule:

Ψj =
1

2πi

∮
λT
f (ζ) ζ−j−1 dζ ≈ λ−j

Q+ 1

Q∑
l=0

f
(
λζ−lQ+1

)
ζ ljQ+1

with ζQ+1 := e
2πi
Q+1 and f(z) := i

√
iδ(z)
k − V I

for Q ≥ j: exponential convergence,
∥∥∥Ψ̃j −Ψj

∥∥∥ ≤ C√
k

λQ+1

1−λQ+1

J.M. Melenk
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Q+ 1

Q∑
l=0

f
(
λζ−lQ+1

)
ζ ljQ+1

with ζQ+1 := e
2πi
Q+1 and f(z) := i

√
iδ(z)
k − V I

for Q ≥ j: exponential convergence,
∥∥∥Ψ̃j −Ψj

∥∥∥ ≤ C√
k

λQ+1

1−λQ+1
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Stability under quadrature – 1D

Theorem

Let V be bounded, nk ≤ T , maxj=1...n

∥∥∥ψj − ψ̃j∥∥∥ ≤ Ck3/2.

Then there exists a constant C(T ) > 0 such that:

‖un − ũn‖L2(Ω) ≤ Ck
−5/4 max

j=0...n

∥∥∥ψj − ψ̃j∥∥∥(‖u0‖L2(R) + ‖Hu0‖L2(R)

)
.

note: maxj=0...n

∥∥∥ψj − ψ̃j∥∥∥ exponentially small for Q ≥ n

Idea of proof: boundary conditions are not local in time

⇒ rewrite as a full space problem that is local in time and can be
analyzed as a time stepping scheme

details

J.M. Melenk
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Stability under quadrature of the solution – 1D

using Q = n quadrature points is nessary

this condition is also (practically) sufficient
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n=64

n=256
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n=64

n=256
n=1024  

3-stage Radau IIA, p = 4, h = k;

L2-error = maximal L2-error over all time steps; quadrature error = maximal error over all weights
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higher spatial dimensions

Z transform Û of stages solves Helmholtz equation

−∆Û −
(

iδ(z)

k
− Vext

)
Û = 0 in Rd \ Ω

the DtN map can be expressed by “classical” integral
operators

−DtN+ :=

(
1

2
−K

)T
V −1

(
1

2
−K(z)

)
+W,

can’t be computed exactly

→ use of Galerkin approximation
introduces additional errors

FEM-BEM coupling problem in each step
(here: symmetric coupling) details

J.M. Melenk
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multi-d formulation with symmetric coupling

(I +ikAH)Un = un1 in Ω,

∂+
n U

n =

n∑
j=0

(−1/2 +KT
j )φn−j −Wjγ

−Un−j

n∑
j=0

Vjφ
n−j =

n∑
j=0

(−1/2 +Kj)γ
−Un−j

un+1 = R(∞)un + bTA−1Un

discretization:

FEM based on Xh ⊂ H1(Ω) for stage vector Un

FEM-BEM coupling based on Yh ⊂ H−1/2(∂Ω) for φn

J.M. Melenk
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Theorem

Let un, Un ∈ H1(Rd) be the semidiscrete approximations and
stage vectors. Let potential V ∈ L∞(Rd). Assume

inf
wh∈Xh

‖u− wh‖L2(Ω) ≤ Ck1/2‖u‖H1(Ω) ∀u ∈ H1(Ω).

Then:

‖un − unh‖H1(Ω) .

k

n−1∑
j=0

inf
xh∈Xh

‖HU j − xh‖H1(Ω) + k

n−1∑
j=0

inf
xh∈Xh

‖U j − xh‖H1(Ω)+

k

n−1∑
j=0

inf
yh∈Yh

‖∂+
n HU j − yh‖H−1/2(Γ) + k

n−1∑
j=0

inf
yh∈Yh

‖∂+
nU

j − yh‖H−1/2(Γ)
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Corollary

q = order of the RK-method

FEM space = p.w. polynomials of degree p1 on mesh, size h1

BEM space = p.w. polynomials of degree p0 on mesh, size h0

u0 sufficiently smooth

Then:

‖u(nk)− unh‖H1(Ω) ≤ CT
[
kq + hp11 + h

p0+3/2
0

]
.
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analysis of the method

analysis is performed in a time stepping manner

aΩ,V(U ,V ) =

(−iA−1U ,V )L2(Ω) + k(∇V ,∇V )L2(Ω) + k(VU ,V )L2(Ω)

method (both discrete and continuous):

aΩ,V(Un,V ) + convolution terms = (und,V )L2(Ω) ∀V
un+1 = R(∞)un + bTA−1Un

rephrase the convolution parts by auxiliary local-in-time terms:

aΩ,V(Un,V ) + aRd\Γ,Vext(U
n
∗ ,V ∗) = (und,V )L2 + (un∗d,V ∗)L2 ∀V
un+1 = R(∞)un + bTA−1Un

un+1
∗ = R(∞)un∗ + bTA−1Un

∗

J.M. Melenk
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analysis of the method

aΩ,V (U
n
,V ) + aRd\Γ,Vext

(U
n
∗ ,V ∗) = (u

n
d,V )

L2 + (u
n
∗d,V ∗)L2 ∀V

u
n+1

= R(∞)u
n

+ b
T
A
−1

U
n
, u

n+1
∗ = R(∞)u

n
∗ + b

T
A
−1

U
n
∗

B((U ,U∗), (V ,V ∗)) := aΩ,V(U ,V ) + aRd\Γ,Vext
(U∗,V ∗)

l((V ,V ∗)) := (und,V )L2 + (un∗d,V ∗)L2

correct ansatz and test spaces

Let Xh ⊆ H1(Ω), Yh ⊆ H−1/2(Γ). Set

Ĥ(Xh, Yh) := {(v, v∗) ∈ Xh ×H1(Rd \ Γ) :

Jγv∗K = −γ−v and γ−v∗ ∈ Y ◦h }.

notation for (U ,U∗) ∈ H1(Ω)×H1(Rd \ Γ):

‖(U ,U∗)‖L2 := ‖U‖L2(Ω) + ‖U∗‖L2(Rd)

‖(U ,U∗)‖H1 := ‖U‖H1(Ω) + ‖U∗‖H1(Rd\Γ)

J.M. Melenk
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Convergence of fully discrete scheme
B((U,U∗), (V ,V ∗)) := aΩ,V (U,V ) + aRd\Γ,Vext

(U∗,V ∗)

l((V ,V ∗)) := (u
n
d,V )

L2 + (u
n
∗d,V ∗)L2

Theorem (local-in-time representation)

The recursion: Find (Un
h,U

n
∗ ) ∈ Ĥ(Xh, Yh) s.t.{

B((Un
h,U

n
∗ ), (V ,V ∗)) = l(V ,V ∗) ∀(V ,V ∗) ∈ Ĥ(Xh, Yh)

+ update formulas for un, un∗

reproduces the stage vectors Un
h of the RKCQ. Furthermore,

J∂nUn
∗ K = −φnh.

 stability analysis for B?

note: Ĥ(Xh, Yh) 6⊂ Ĥ(H1(Ω), H−1/2(Γ))
 analysis will require additional consistency errors

J.M. Melenk
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Theorem (stability)

Consider the sequence{
B((Un

h,U
n
∗ ), ·) = l(·) + (Fn, ·),

+update formulas for un, un∗
n = 0, 1, . . . ,

(i) Let Fn ∈ L2 ∀n. Then ‖unh‖L2 ≤ ‖u0
h‖L2 + C

n−1∑
j=0

‖Fn‖L2

(ii) Fn ∈ H1 ∀n. Then

‖unh‖H1 ≤ ‖u0
h‖H1+C

n−1∑
j=0

inf
wh

[
‖wh‖H1 + k−1/2‖Fn −wh‖H1

]
Key ingredient of the proof:

express B−1 in terms of a self-adjoint operator T
with spectral theorem express B−1 as a multipl. oper. with a fct. g

g can be expressed through R. Use |R(z)| ≤ 1 on imaginary axis

J.M. Melenk
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g can be expressed through R. Use |R(z)| ≤ 1 on imaginary axis

J.M. Melenk
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Theorem (stability)

Consider the sequence{
B((Un

h,U
n
∗ ), ·) = l(·) + (Fn, ·),

+update formulas for un, un∗
n = 0, 1, . . . ,

(i) Let Fn ∈ L2 ∀n. Then ‖unh‖L2 ≤ ‖u0
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solution at t = 0 (left) and t = 2 (right)

solution is sum of two Gaussian beams: uex = u1
ex + u2

ex

with

u
i
ex(x, t) =

4

√
2

π

√
i

−4t + i
exp

−i
∣∣∣x− xic∣∣∣2 − pi

0 · (x− x
i
c) +

∣∣∣pi
0

∣∣∣2 t
−4t + i

 ,
x

1
c = (−1, 1, 0), p

1
0 = (1, 0, 0)

x
2
c = (1,−1, 0), p

2
0 = (0, 0, 0)

modulus of solution on slize z = 0 is shown
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“symmetric coupling”

12 24 48 96

10−2

10−1

100

O(n−2)

n ·m

m
ax

er
ro

r

L2-error

H1-error

1 stage Gauss (order 2)

implementation details:

n = number steps

m = number stages

Ω = (−4, 4)3

T = 2

h = k

pFEM = time order

pBEM = pFEM − 1

→ space discret. matches temporal order

FEM = Netgen/NgSolve

BEM = BEM++

problem size (per stage) for 2-stage Radau IIA:
Xh has 900k DOF,
Yh has 73k DOF,
200k tets, 12k bdy triangles
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“symmetric coupling”, cont’d

24 48 96

10−2

10−1

100

O(n−3)

n ·m

m
ax

er
ro

r

L2-error

H1-error

2 stage Radau IIA (order 3)

24 48 96

10−3

10−2

10−1

O(n−4)

n ·m
m

ax
er

ro
r

L2-error

H1-error

3 stage Radau IIA (order 5)
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“Johnson-Nédélec coupling”

time DOF max L2 error rate max H1 error rate
steps (FEM)

8 2.197 0.182747 — 0.917963 —
16 15.625 0.297628−1 6.1 0.276579 3.3
32 117.649 0.193383−2 15.4 0.436807−1 6.3
64 912.673 0.118364−3 16.3 0.567161−2 7.7

geometry: cube (side length 6);
2-stage Radau IIA, h = k
FEM with p = 3
BEM with p = 2; Johnson-Nédélec coupling

smooth solution; end time: T = 1

computations: Netgen/NgSolve and BEM++
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Summary and outlook

Summary:

infinite domain → introduce artificial boundary

Z-transform yields transparent b.c. via Helmholtz problems

Runge Kutta methods for high order

discrete stability → method stable under quadrature errors

full order in space and time

outlook:

compression techniques

extension of discrete stability analysis for high order RK
convolution quadrature to wave equation
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higher spatial dimensions: b.c. for the stage vector Un

δ(z) =

(
A+

z

1− z
1b>

)−1

Z-transform of stage vectors Û solves Helmholtz equation

−∆Û +

(
− iδ(z)

k
+ Vext

)
︸ ︷︷ ︸

=:B2(z)

Û = 0 in Rd \ Ω (1)

fact: σ(B(z)) ⊂ C+

the DtN+ map for (1) can be expressed by “classical” integral
operators K, KT , V , and W (all depending on B(z))

−DtN+ := W +

(
−1

2
+KT

)
V −1

(
−1

2
+K

)
,
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transparent b.c. in higher dimensions, cont’d

−DtN+ := W +

(
−1

2
+KT

)
V −1

(
−1

2
+K

)
,

symmetric coupling introduces additional variable
φ̂ := V −1(−1/2 +K)Û to lead to the system:

−DtN Û = W Û +

(
−1

2
+KT

)
φ̂, V φ̂ =

(
−1

2
+K

)
Û

inverse Z-transformation yields (with computable) operators Kj ,
KT

j , Wj , Vj :

∂+
nU

n =

n∑
j=0

(−1/2 +KT
j )φn−j −Wjγ

−Un−j

n∑
j=0

Vjφ
n−j =

n∑
j=0

(−1/2 +Kj)γ
−Un−j back

J.M. Melenk



Theorem (convergence in h and k in 1D)

Let potential V ∈W 1,∞(R1).
Let Xh ⊂ H1(Ω) and let the A-stable RK method have order q.
Let u0 be sufficiently smooth. Then:

‖unh − u(nk)‖H1(Ω) � k
n−1∑
j=0

inf
xh∈Xh

∥∥U j − xh
∥∥
H1(Ω)

+ k

n−1∑
j=0

inf
xh∈Xh

∥∥HU j − xh
∥∥
H1(Ω)

+ kq
(
‖Hq+2u0‖L2(R) + ‖Hq+1u0‖L2(R)

)
corollary
Xh = space of piecewise polynomials of degree p. Then:

sup
n:nk≤T

‖unh − u(nk)‖H1(Ω) ≤ C [kq + hp] .

J.M. Melenk



Numerical example – 1D

consider the initial condition u0 as a Gaussian distribution

V ≡ 0

exact solution is known
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compare behavior of different numerical schemes
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Numerical example – 1D
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Spatial convergence
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p = 2 in space, 5-stage Gauss in time, h = k back
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Stability 1D – Proof
consider solutions to

(I + ikAHh)En(x) = en(x)1 + τn, x ∈ (xl, xr),

∂nE
n(x) =

n∑
j=0

ΨkE
n−j .

extend the solution to the whole space:

(I + ikAH)W n(x) = wn(x)1, x ∈ R \ [xl, xr],

W n = En x ∈ {xl, xr}

⇒ ∂nW
n = ∂nE

n

combining gives:(
I + ikAH̃

)
En(x) = en(x)1+ τn, x ∈ R
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Stability 1D – Proof

(
I + ihAH̃

)
En(x) = en(x)1 + τn, x ∈ R

structurally like one RK-step for whole-space Schrödinger
equation

use stability function of method R(z).

write en+1 = R(ikT )en + g(τn), T : self adjoint operator

for A stable methods we have |R(it)| ≤ 1 for t ∈ R

back
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