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the semidiscrete problem

0
iau(a},t) = —Au(z,t) + V(x)u(z,t) =: Hu, zeRy t>0

u(-,t = 0) = ug.
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the semidiscrete problem
Schrodinger equation
igu(x,t) = —Au(z,t) + V(z)u(z,t) =: Hu, zeRY >0

ot
u(-,t =0) = up.

Theorem (semidiscrete approximation)

Let the potential V be bounded, and let uy be sufficiently smooth.
Let the semidiscrete approximations u™ ~ u(nk) be obtained with
an A-stable RK or multistep method of order q. Then:

1" — w(nk)|| 2 gay S ThUH ™ wol| 12 (ga),

™ = (k)| s ety S T (I 20l gty + [H )| ey ) -

Proof: follows from rational approximations of semigroups. TU

VIENNA

J.M. Melenk
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Problem formulation

@ Schrodinger equation

J.M. Melenk
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Problem formulation

@ Schrodinger equation

@ discretization in time using multistep or Runge-Kutta method
= sequence of approximations u" = u(nk) for n >0

J.M. Melenk
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Problem formulation

@ Schrodinger equation

@ discretization in time using multistep or Runge-Kutta method
= sequence of approximations u" = u(nk) for n >0

@ in space: FEM — bounded domain {2

J.M. Melenk
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Problem formulation

@ Schrodinger equation

@ discretization in time using multistep or Runge-Kutta method
= sequence of approximations u" = u(nk) for n >0

@ in space: FEM — bounded domain {2

@ choose bounded domain of interest €2 such that:

e potential ¥V = V,,; € R outside 2
e suppug C €2

J.M. Melenk
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Problem formulation

Schrodinger equation

discretization in time using multistep or Runge-Kutta method
= sequence of approximations u" = u(nk) for n >0
in space: FEM — bounded domain {2
choose bounded domain of interest € such that:
e potential ¥V = V,,; € R outside 2
e suppug C €2
@ questions:
o what (transparent) boundary conditions to pose for u™ on 9Q?
— has the form of a DtN operator
o how to realize the DtN operator? — FEM-BEM coupling

° ‘ error and stability analysis?

J.M. Melenk
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Multistep methods
.0
lau(x,t) = —Au(z,t) + V(x)u(z,t)
o K-step method is given by coefficients

aj,/BjGR, 7=0,....K

@ sequence of approximations defined as the solutions of

. K K
SY e =Y B (-A+ V)" iz K.
j=0 =0

J.M. Melenk
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Derivation of the boundary conditions

o idea: use the Z-transform: 4(z) := Y 7  u"z™
eset H:=-A+YV

. K K
%Z ozju”_j = Z BjHu"_j Vn > K
=0 J=0

Conclusions
o]

J.M. Melenk
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Derivation of the boundary conditions

o idea: use the Z-transform: a(z) := > 7 ju"z™:
eset H:=-A+YV

n - on—j _ n on—j
E z ? g ;U = E 2" | H g Bju

J.M. Melenk
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3D numerics
0000

Derivation of the boundary conditions

o idea: use the Z-transform: 4(z) := ) 7

esetH:=—-A+YV

n,n.
U "z

. K 00
D S
7=0

n=K

J

Conclusions
o]

J.M. Melenk
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Derivation of the boundary conditions

o idea: use the Z-transform: a(z) := > 7 ju"z™:
eset H:=-A+YV

. K 00
N S IR
7=0

n=K

i(z) a(z)

J.M. Melenk
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Derivation of the boundary conditions

o idea: use the Z-transform: 4(z) := Y 7  u"z™
eset H:=-A+YV

. K K
%Zajzj w(z) = Zﬁjzj (—A+V)u
=0 =0

Conclusions
o]

J.M. Melenk



Introduction TBC in 1D Higher spatial dimensions Analysis 3D numerics Conclusions
0000 0O@000000000 0000 0000 0000 o]

Derivation of the boundary conditions

o idea: use the Z-transform: a(z) := > 7 ju"z™:
eset H:=—-A+V

. K K
%Zajzj w(z) = Zﬂjzj (—A+V)u
j=0 J=0

— differential equation for 1:

i6(z)

(448 v)or-o. s o

K -
> =0 P57

J.M. Melenk



Derivation of the boundary conditions - 1D
@ in 1 spatial dimension:

(@—l—@g—l))ﬂ(z)zo
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Derivation of the boundary conditions - 1D

@ in 1 spatial dimension:

(wTZ)+a§—v)a(z):o

@ outside of 2 = (z;,x,) the potential V is constant

J.M. Melenk
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Derivation of the boundary conditions - 1D

@ in 1 spatial dimension:

<ﬁ;)-+62 v>¢uz):()

@ outside of 2 = (z;,x,) the potential V is constant
@ solution @ on (x,,00) has form

iz x) = A*(2) VT VT LA (z) VI

J.M. Melenk
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Derivation of the boundary conditions - 1D

@ in 1 spatial dimension:

<ﬂé)—+82 v>iuz):()

@ outside of 2 = (z;,x,) the potential V is constant
@ solution @ on (x,,00) has form

iz x) = A*(2) VT VT LA (z) VI

@ asymptotic behavior u(z) — 0 for  — oo implies A~ =0

J.M. Melenk
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Derivation of the boundary conditions - 1D

@ in 1 spatial dimension:

<15]i 2 L g2 v) i(z) =0

@ outside of 2 = (z;,x,) the potential V is constant
@ solution @ on (x,,00) has form

(z0) = A" () VIE VA

@ asymptotic behavior u(z) — 0 for  — oo implies A~ =0

J.M. Melenk
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Derivation of the boundary conditions - 1D

in 1 spatial dimension:

(1512 2 L g2 v) i(z) =0

@ outside of 2 = (z;,x,) the potential V is constant

@ solution @ on (x,,00) has form
5(2) . /s
u(z;x) = A+(z) Witge—Vra —G—M
@ asymptotic behavior u(z) — 0 for  — oo implies A~ =0

@ explicit form of Dirichlet-to-Neumann operator:

4]
DtNa(z) = 0,0(z) =i i(]:) =V u(z)
(note: DtN cannot be realized exactly in higher dimensions)

J.M. Melenk



Derivation of the boundary conditions — 1D

Op0(z) =1 i% -V, a(z)




Derivation of the boundary conditions — 1D

Op0(z) =1 i% -V, a(z)

@ inverse Z-transform to get O u"(z;)
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Derivation of the boundary conditions — 1D

@ inverse Z-transform to get O u"(z,)

@ make a power series ansatz

D e =i i)y,
n=0 k

J.M. Melenk
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Derivation of the boundary conditions — 1D

@ inverse Z-transform to get O u"(z,)

@ make a power series ansatz

nz:%zpnz" ::i,/i(s(:)—vr

e Cauchy-product formula gives:

Opu"(x) = Zwkun_k(a:)
k=0

J.M. Melenk
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Transparent boundary conditions — Multistep methods 1D

For all n > K, find u™ such that

Yo =30 B (02 + V) ur, x € (wy, @),
pu(x) = 3 p_g hru™ " (2), T =z,

analogous b.c. for z = x;

with

D iz =i 0) V,
n=0

J.M. Melenk



Runge-Kutta methods on R?

o 7 A-stable multistep methods of order > 2.
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Runge-Kutta methods on R

o 7 A-stable multistep methods of order > 2.
@ Runge-Kutta methods of arbitrarily high order available

J.M. Melenk
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Runge-Kutta methods on R

o 7 A-stable multistep methods of order > 2.
@ Runge-Kutta methods of arbitrarily high order available
@ m-stage method given by A € R™*™ p e R™, ¢c € R™

J.M. Melenk
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Runge-Kutta methods on R

o 7 A-stable multistep methods of order > 2.
@ Runge-Kutta methods of arbitrarily high order available
@ m-stage method given by A € R™*™ h € R™, c € R™

@ approximation at time t,11 :=t,, + k given by:

m
j=1

Unt1=un+k Y b (-iHUY)
j=1

@ we only consider A-stable methods with regular matrix A.

J.M. Melenk
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RK-method

(I+ikAH)U"™ = 1u,
u"t = R(o0) + b7 ATIU"

RK-method, rewritten

(<A +kH)U" =u,d, d=-iA""1
update formula: u"™ = R(co) + bTATIU™

J.M. Melenk
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Transparent boundary conditions — RK methods 1D

@ analogous derivation using the Z-transform technique

J.M. Melenk
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Transparent boundary conditions — RK methods 1D
@ analogous derivation using the Z-transform technique
o U™ and uy1 solve
(-iA P+ kH) U™ (z) = up(z)d @ € (3, 2,),
0.U"(a) = T ;U (a) € {an,an),
Uns1 = tn + k3T by (~IHU?)

where

-1
— (A4 1672
o) = (A 87 2 )

Swi =i/ oy v <
n=0

.. l,r . .
o coefficients \Il% ) are now matrices in C"™*™,

J.M. Melenk
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Transparent boundary conditions — RK methods 1D
@ analogous derivation using the Z-transform technique
o U™ and uy1 solve
(-iA P+ kH) U™ (z) = up(z)d @ € (3, 2,),
0.U"(a) = T ;U (a) € {an,an),
Uns1 = tn + k3T by (~IHU?)

where

-1
— (A4 1672
o) = (A 87 2 )

o0 .6
Swi =i/ oy v <

n=0

.. l,r . .
o coefficients \Il% ) are now matrices in C"™*™,

@ possible to show optimal convergence

J.M. Melenk



From semi discrete to fully discrete — 1D

@ problem: coefficients Wy, are not known exactly
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From semi discrete to fully discrete — 1D

@ problem: coefficients ¥y, are not known exactly

@ solution: approximate Cauchy integral by trapezoidal rule:

1

\I] .
i~ omi

. \—J .
f Q¢ de~ 0+1 (ACC;%l) Cgﬂ

—

with (g1 := ¢BF1 and f(z) =i ' =V

J.M. Melenk
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From semi discrete to fully discrete — 1D

@ problem: coefficients ¥y, are not known exactly

@ solution: approximate Cauchy integral by trapezoidal rule:

1

\I] .
i~ omi

. \—J .
f Q¢ de~ 0+1 (Acéi-].) Cgﬂ

with (g41:=e and f(z) :=1i V1

Q+1
e for () > j: exponential convergence, H\Il -, H < fl/\)\Q"’l

J.M. Melenk
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Stability under quadrature — 1D

Theorem

Let V be bounded, nk < T, maxj—1..n [1; — || < Ck¥/2.
Then there exists a constant C'(T) > 0 such that:

o = ey < O s [ = | (e + ELulof, )

4

details

J.M. Melenk



Introduction TBC in 1D Higher spatial dimensions Analysis 3D numerics Conclusions

0000

00000000080 0000 0000 0000 [e]

Stability under quadrature — 1D

Theorem

Let V be bounded, nk < T, maxj—1..n [1; — || < Ck¥/2.
Then there exists a constant C'(T) > 0 such that:

o = ey < O s [ = | (e + ELulof, )

4

note: max;j—o...n

P, — {pJH exponentially small for Q@ > n

details

J.M. Melenk
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Stability under quadrature — 1D

Theorem

Let V be bounded, nk < T, maxj—1..n [1; — || < Ck¥/2.
Then there exists a constant C'(T) > 0 such that:

o = ey < O s [ = | (e + ELulof, )

4

note: max;j—o...n

P, — {p]H exponentially small for Q@ > n

Idea of proof: boundary conditions are not local in time

details

J.M. Melenk
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Stability under quadrature — 1D

Theorem

Let V be bounded, nk < T, maxj=t..n [; — %; | < k2
Then there exists a constant C(T") > 0 such that:

o = ey < O s [ = | (e + ELulof, )

4

note: max;j—o...n

P, — {p]H exponentially small for Q@ > n

Idea of proof: boundary conditions are not local in time
= rewrite as a full space problem that is local in time and can be
analyzed as a time stepping scheme

details

J.M. Melenk
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Stability under quadrature of the solution — 1D

@ using (Q = n quadrature points is nessary
e this condition is also (practically) sufficient

10
10° 5
= 5
e <
£ -5
& g1
- k<1
107 S
o
n=64 RSN S 1071 n=64
- - - n=256 - - - n=256
n=1024 ‘ n=1024
4 16 64 256 1024 4096 4 16 64 256 1024 4096
Number of auadrature points Number of auadrature points

3-stage Radau llA, p = 4, h = k;

L2-error = maximal L2-error over all time steps; quadrature error = maximal error over all weights

J.M. Melenk
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higher spatial dimensions

e Z transform U of stages solves Helmholtz equation

AU — (15](5) - Vm> U=0 inRN\Q

J.M. Melenk
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higher spatial dimensions

e Z transform U of stages solves Helmholtz equation

AU — <15](j) - vm> U=0 inRN\Q

@ the DtN map can be expressed by “classical” integral
operators

~DtN" := (; - K)Tvl (1 - K(z)) + W,

Conclusions
o]

J.M. Melenk
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higher spatial dimensions

e Z transform U of stages solves Helmholtz equation

i0(2)
k

—Afj—< —vm>fj_o in R\ Q

@ the DtN map can be expressed by “classical” integral
operators

~DtN" := (; - K)Tvl (1 - K(z)) + W,

@ can't be computed exactly

Conclusions
o]

J.M. Melenk
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higher spatial dimensions

e Z transform U of stages solves Helmholtz equation

AU — <15](j) - vm> U=0 inRN\Q

@ the DtN map can be expressed by “classical” integral
operators

~DtN" := (; - K)Tvl (; - K(z)) + W,

@ can't be computed exactly — use of Galerkin approximation
introduces additional errors

J.M. Melenk
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higher spatial dimensions

e Z transform U of stages solves Helmholtz equation

AU — <15](j) - vm> U=0 inRN\Q

@ the DtN map can be expressed by “classical” integral
operators

~DtN" := (; - K)Tvl (; - K(z)) + W,

@ can't be computed exactly — use of Galerkin approximation
introduces additional errors

e FEM-BEM coupling problem in each step
(here: symmetric coupling) details

J.M. Melenk
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multi-d formulation with symmetric coupling

(I+ikAH)U" =u"1  in Q,

U =Y (-1/2+ K] )" =Wy U™
j=0
S Ve = (—1/2+4 Ky U
j=0 j=0

u"™ = R(co)u™ + b7 AU

discretization:
o FEM based on X}, C H*(Q) for stage vector U™
e FEM-BEM coupling based on Y, ¢ H~/2(9Q) for ¢

J.M. Melenk



Higher spatial dimensions
00®0

Theorem

Let u™, U™ € H'(R?) be the semidiscrete approximations and
stage vectors. Let potential V € L= (R?). Assume

o2 llu = whllp2e) < Ck Plulgq — Vue H(Q).

Then:
[Ju™ — UZ”Hl(Q) S
n—1
kZ At VU7 = anllmeey + 2 ot 107 = oo+
n—1 n—1
kzy:relf 10T HU? — ynllg-1/2ry + kz inf. ||a+UJ — ynllg-1/2 ()

TU

VIENNA

J.M. Melenk
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Corollary
@ ¢ = order of the RK-method
@ FEM space = p.w. polynomials of degree py on mesh, size h;
@ BEM space = p.w. polynomials of degree py on mesh, size hg

e ug sufficiently smooth

Then:

lu(nk) — up || iy < CT [k 4+ b + hgo+3/2] ‘

J.M. Melenk



analysis of the method

@ analysis is performed in a time stepping manner
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analysis of the method

@ analysis is performed in a time stepping manner
] GQ,V(U, V) =
(—iA7'U, V) 1200) + K(VV,VV) 120y + k(VU, V) 12(0

J.M. Melenk
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analysis of the method

@ analysis is performed in a time stepping manner
] GQ,V(U, V) =
(AU, V) 200) + K(VV,VV) 12(0) + k(VU, V) 12(q)

e method (both discrete and continuous):

aq,y(U", V) + convolution terms = (u"d, V) 12(q) vV
u" = R(co)u™ + b ATIU™

J.M. Melenk
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analysis of the method

@ analysis is performed in a time stepping manner
o GQ,V(U, V) =
(AU, V) 200) + K(VV,VV) 12(0) + k(VU, V) 12(q)
e method (both discrete and continuous):
aqy(U", V) + convolution terms = (u"d, V') 2(q) vV
u"t = R(co)u"™ + b AU

@ rephrase the convolution parts by auxiliary local-in-time terms:

CLQ,V(Un, V) + aR‘L\F,Vc;m (U:, V*) = (Und, V)LQ + (U:d, V*)LZ
u" = R(co)u" 4+ b ATIU"
u = R(co)u” + bT AU

J.M. Melenk



analysis of the method

aQ (U™, V) +agi (UL V) =@"d, V)a + (uld, Va)pa YV

1 T ,—1 1 T ,—1
u" T = R(co)u™ + T AT U™, u?tt = R(oo)u” + T AT U™
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analysis of the method

ag (U™, V) + am\ryvm(uf, V) =@"d, V)2 + uld, Vi),2 VYV

ut = R(co)u™ + bTAilUn, uf+1 = R(oco)ul + bTAilUZL

B((U7 U*)7 (V7 V*)) = aQ,V(Uv V) + aRd\F,prt (U*a V*)
(V, V) = (u"d, V)2 + (u"d, V)2

J.M. Melenk
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analysis of the method

ag (U™, V) + am\ryvm(uf, V) =@"d, V)2 + uld, Vi),2 VYV

ut = R(co)u™ + bTAilUn, uf+1 = R(oco)ul + bTAilUZL

B((U7 U*)7 (V7 V*)) = aQ,V(Uv V) + aRd\F,prt (U*a V*)
(V, V) = (u"d, V)2 + (u"d, V)2

correct ansatz and test spaces

Let X;, C HY(Q), Y}, € H-Y/2(T). Set
H(Xp,Y3) := {(v,v.) € Xp x HYRI\T)

[vo ] = =y v and ~ v, €Y}

J.M. Melenk
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analysis of the method

ag (U™, V) + aE,l\Fyvm(Uf, V) =@w"d, V)2 + (uid, Vi), VYV

un = R(co)u™ + bTAilUn, uf+1 = R(oco)ul + bTAilUZL

B((U7 U*)7 (V7 V*)) = G/Q’V(U, V) + G’R‘I\F,V()m (U*a V*)
(V, V) = (u"d, V)2 + (u"d, V)2

correct ansatz and test spaces

Let X;, C HY(Q), Y}, € H-Y/2(T). Set
H(Xp,Y3) := {(v,v.) € Xp x HYRI\T)

[vo ] = =y v and ~ v, €Y}

notation for (U,U,) € H(Q) x HY(R4\ I):
o (U, Uz = U2 + Ul L2(re)
o (U, U )|m =IUlur () + Ul @ar

J.M. Melenk
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Convergence of fully discrete scheme

B(U.U.), (V. V) = aquU, V) +aga oy (Ua, V)

W(V,V.) o= (u™d, V) 2 + (uTd, Vi) 2

Theorem (local-in-time representation)

The recursion: Find (U}, U™) € H(X},Y},) s.t.

{B(( P UM, (V, VL) =1V, V)

+ update formulas for v, uf

reproduces the stage vectors U} of the RKCQ. Furthermore,

HanUQ]] = _QZ)Z

Y(V,V,) € H(Xp, Y3)

Conclusions
o]

J.M. Melenk
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Convergence of fully discrete scheme

B(U,U.), (V, V) i= a0 v(U, V) + aga |, (Us, V)

W(V,V.) o= (u™d, V) 2 + (uTd, Vi) 2

Theorem (local-in-time representation)

The recursion: Find (U}, U™) € H(X},Y},) s.t.

{B(( P UM, (V, VL) =1V, V)

+ update formulas for v, uf

reproduces the stage vectors U} of the RKCQ. Furthermore,

Y(V,V,) € H(Xp, Y3)

Conclusions
o]

~~ stability analysis for B?

J.M. Melenk



Introduction TBC in 1D Higher spatial dimensions Analysis 3D numerics Conclusions

0000

00000000000 0000 ocoeo 0000 [e]

Convergence of fully discrete scheme

B((U,U.),(V,V.) = ag v(U, V) + aga .y, (Us, Vi)

WV, V) = (ud, V) o + (uld, Vi) 2
Theorem (local-in-time representation)

The recursion: Find (U}, U™) € H(X},Y},) s.t.

B(URUD,(V,V.) =LV, V. V(V,V.) € HXp,Yh)
+ update formulas for u", ul}

reproduces the stage vectors U} of the RKCQ. Furthermore,
[6:.U7] = —o}.

~~ stability analysis for B?

note: H(Xn,Vy) ¢ H(H'(Q), H-Y2(T))
~> analysis will require additional consistency errors
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Theorem (stability)

Consider the sequence

B((Uy,U%Y),) =1() + (Fn, ),
+update formulas for u™, uf
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Theorem (stability)

Consider the sequence

B(( Z? U:})v ) = l() + (Fm ‘):

n=0,1,...,
~+update formulas for u™, u}
n—1
(i) Let F, € L2 Vn. Then |[uflr2 < uplz2 + C Y |[Fnllr2
j=0
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Theorem (stability)

Consider the sequence

usions

~+update formulas for u™, u} Y
n—1
(i) Let F, € L2 Vn. Then |[uflr2 < uplz2 + C Y |[Fnllr2
j=0
(i) F, € HY Vn. Then
n—1 -
il < Nl +C Y it [[[wallzzs + k"% [ = v
J=0 )
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Theorem (stability)

Consider the sequence

+update formulas for u™, uf Y
n—1
(i) Let F, € L2 Vn. Then |[uflr2 < uplz2 + C Y |[Fnllr2
§=0

(i) F, € HY Vn. Then

n—1

lufllen < llufllen+C ) int [HwhHHl + k12| Fn — wal| g
—o " i
J

Key ingredient of the proof:

@ express B! in terms of a self-adjoint operator T~
@ with spectral theorem express B~! as a multipl. oper. with a fct. g
@ ¢ can be expressed through R. Use |R(z)| < 1 on imaginary axis TU

VIENNA
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solution at ¢t =0 (Ieft) and t =2 (right)

T rerra N L83d0-02

- n 831 // Hetzen £.3.1

solution is sum of two Gaussian beams: u.; = uix +u?

i ———— o —

with

. . L2
o 42 o~ 2i|” — bl (e —ai) + 0|t
u x, = —

e 74t+1 —4t +1i

(-1,1,0),  pp = (1,0,0)
2
=(1,-1,0), pg=(0,0,0)

T

1
c
2
Te

modulus of solution on slize z = 0 is shown
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“symmetric coupling”

—B— L2-error

—s— H' error

[ T
109 8
5 |
2 1071 b
(g0 -
E B
102 8

L1 | |

12 24 48
n-m

1 stage Gauss (order 2)

implementation details:

n = number steps

m = number stages

Q= (—4,4)3
T=2
h =k

PrEM = time order
PBEM = PrEM — 1
— space discret. matches temporal order
FEM = Netgen/NgSolve
BEM = BEM++

problem size (per stage) for 2-stage Radau IIA:
X, has 900k DOF,

Y}, has 73k DOF,

200k tets, 12k bdy triangles
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“symmetric coupling”, cont'd

T ] r T ]
100 = —B8— L2-error E —B— L2-error

E —x%— Hl-error 10_1 - —x— H'-error
S I S
% 1071} x 1072 E
[y} r ) r ]
£ g = i 1
i 10731 ]

-2 | B ]

10 E L | ]
24 48 96

n-m

2 stage Radau IIA (order 3) 3 stage Radau IIA (order 5)
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“Johnson-Nédélec coupling”

time DOF | max L? error | rate | max H! error | rate
steps | (FEM)

8 2.197 | 0.182747 — 1 0.917963 —

16 | 15.625 | 0.297628_4 6.1 | 0.276579 3.3

32 | 117.649 | 0.193383_9 15.4 | 0.436807_4 6.3

64 | 912.673 | 0.118364_3 16.3 | 0.567161_5 7.7

geometry: cube (side length 6);

2-stage Radau lIA, h =k

FEM with p =3

BEM with p = 2; Johnson-Nédélec coupling
smooth solution; end time: T' =1

computations: NETGEN/NGSOLVE and BEM++
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Summary and outlook

Summary:

infinite domain — introduce artificial boundary

Z-transform yields transparent b.c. via Helmholtz problems

°
@ Runge Kutta methods for high order

o discrete stability — method stable under quadrature errors
°

full order in space and time
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Summary and outlook

Summary:
@ infinite domain — introduce artificial boundary
@ Z-transform yields transparent b.c. via Helmholtz problems
@ Runge Kutta methods for high order
o discrete stability — method stable under quadrature errors
o full order in space and time

outlook:
@ compression techniques

@ extension of discrete stability analysis for high order RK
convolution quadrature to wave equation
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higher spatial dimensions: b.c. for the stage vector U"

0 8(z) = <A+ - z 11bT>1

—Z

@ Z-transform of stage vectors U solves Helmholtz equation

i0(2)
k

=:B2%(z)

—AfJ+<— +Vezt>fJ:0 inRIN\Q (1)

e fact: o(B(z)) C C*T
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higher spatial dimensions: b.c. for the stage vector U"

0 8(z) = <A+ - z 111?)1

—Z

@ Z-transform of stage vectors U solves Helmholtz equation

i0(2)
k

=:B2%(z)

—AfJ+<— +Vm>ff:0 inRIN\Q (1)

e fact: o(B(z)) C C*T
e the DtNT map for (1) can be expressed by “classical” integral
operators K, KT, V, and W (all depending on B(z))

—DtN* =W + (—; + KT> vt (—; + K) ,
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transparent b.c. in higher dimensions, cont'd
—DtNT =W + <; +KT> vt <; +K> ,

@ symmetric coupling introduces additional variable
¢ :=V"1(=1/2+ K)U to lead to the system:

3 2 1 5 - 1 .
—DtNUzWU+<—2+KT>o, Vo :<—2+ )U
@ inverse Z-transformation yields (with computable) operators K,
KT, W;, V.
U™ =Y (~1/2+ K])o" 7 =Wy U

Jj=0
n

ZVJ-@”"" = 2(71/2+Kj)'y*U”7j back
7=0
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Theorem (convergence in h and k in 1D)

Let potential V € WLH(RY).

Let X;, C HY(Q) and let the A-stable RK method have order q.

Let ugy be sufficiently smooth. Then:

Huh - u(nk ||H1 = kzzlgg( ‘U] - thHl(Q)

+k Zm“g(h ‘HUj - thHl(Q)

+ k7 (IH" 2w r2ry + IHI o r2(r))

corollary
X}, = space of piecewise polynomials of degree p. Then:
sup [ — w(nk) | sy < C k7 + 7).

n:nk<T

nnnnnn
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Numerical example — 1D

@ consider the initial condition ug as a Gaussian distribution
o V=0

@ exact solution is known

Re(u(x=0)) Re(u(xt=4))

@ compare behavior of different numerical schemes
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H” error

Numerical example

1D

]

- = =--0(n

,,,,o(an)

,,,,o(nff:)

radaulIA m=]

1
)

gauss m=1

radaulIA m=

10

10°
Number of time steps
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Spatial convergence

10
L2 error
H' error
w2l ---oh?) |
- - - 0o(h)
107 b ]
S
i
10° | ]
10° | ]
-10
10 L L L
10' 10° 10° 10 10°
Degrees of freedom
p = 2 in space, 5-stage Gauss in time, h =k baCk
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Stability 1D — Proof

@ consider solutions to

(I +ikAH,) E"(z) = ep(x)l +7,, € (27,2,),

OnE"(x) =Y W E".
=0
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Stability 1D — Proof

@ consider solutions to

(I +ikAH,) E"(z) = ep(x)l + 1, x € (27, 2/),
OnE"(x) =Y W E".
=0

@ extend the solution to the whole space:
(I +ikAH)W" (z) = wy(x)1, x € R\ [z, z,],
W"=FE, x € {x;,x,}
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Stability 1D — Proof

@ consider solutions to

(I +ikAH,) E"(z) = ep(x)l + 1, x € (27, 2/),
OnE"(x) =Y W E".
=0

@ extend the solution to the whole space:
(I +ikAH)W" (z) = wy(x)1, x € R\ [z, z,],
W"=FE, x € {x;,x,}
= 0, W =320 U, W =3 Wi
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Stability 1D — Proof

@ consider solutions to

(I +ikAH,) E"(z) = ep(x)l + 1, x € (27, 2/),
OnE"(x) =Y W E".
=0

@ extend the solution to the whole space:
(I +ikAH)W" (z) = wy(x)1, x € R\ [z, z,],
W"=FE, x € {x;,x,}
= 0, W =320 U, W =3 Wi

= 0, W" =0, E"
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Stability 1D — Proof

@ consider solutions to

(I +ikAH,) E"(z) = ep(x)l + 1, x € (27, 2/),
OnE"(x) =Y W E".
=0

@ extend the solution to the whole space:
(I +ikAH)W" (z) = wy(x)1, x € R\ [z, z,],
W"=FE, x € {x;,x,}
= 0,W" =0,E™

@ combining gives:

<I n ikAH) E'(z)=en(z)l + 7, z€R

J.M. Melenk



Stability 1D — Proof

(I + ihAE) E"(z)=ep(z)l+71,, z€R
@ structurally like one RK-step for whole-space Schrodinger

equation

back
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Stability 1D — Proof

(I + ihAE) E"(z)=ep(z)l+71,, z€R

@ structurally like one RK-step for whole-space Schrodinger
equation

@ use stability function of method R(z).

back
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Stability 1D — Proof

<I + ihAE) E"(z)=ep(z)l+71,, z€R

@ structurally like one RK-step for whole-space Schrodinger
equation

@ use stability function of method R(z).
e write e, 1 = R(ikT)e, + g(1,), T : self adjoint operator

back
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Stability 1D — Proof

(I 4 ihAﬂ) E"(z)=en(z)l +7,, z€R

structurally like one RK-step for whole-space Schrodinger
equation

@ use stability function of method R(z).
o write ey 1 = R(ikT)e, + g(15,), T : self adjoint operator
o for A stable methods we have |R(it)| <1 for t € R

lentll < llenll + lI7nll

back
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Stability 1D — Proof

(I 4 ihAﬂ) E"(z)=en(z)l +7,, z€R

structurally like one RK-step for whole-space Schrodinger
equation

@ use stability function of method R(z).

o write ey 1 = R(ikT)e, + g(15,), T : self adjoint operator
o for A stable methods we have |R(it)| <1 for t € R
lensall < 3250 73]

back

nnnnnn

J.M. Melenk



	Introduction
	TBC in 1D
	Multistep methods
	Runge-Kutta methods
	stability under quadrature

	Higher spatial dimensions
	Analysis
	3D numerics
	Conclusions
	Appendix

