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Primitive groups and Maximal subgroups

Primitive permutation actions = "atoms" of permutation actions
G y X is primitive ⇔ point stabilizers are maximal.

General question

Given a group (not as permutation group), what are its primitive
permutation representations? i.e. What are its maximal subgroups?

If G is �nitely generated, every proper subgroup is contained in a
maximal one.

First basic question

Does a given �nitely generated group contain maximal subgroups of
in�nite index?
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The class IP

Let IP denote the class of f.g. groups with some maximal subgroup of
in�nite index.
Some known results:

/∈ IP
� nilpotent groups
� virtually soluble linear groups
[Margulis+Soifer, '81]

∈ IP
� free groups
� not v.s. linear groups
[Margulis+Soifer, '81]

� mapping class groups,
hyperbolic groups, other
"geometric" groups (with
appropriate caveats)
[Gelander+Glasner, '07]
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Big and small groups: word growth

De�nition
The growth function γG (n) of G w.r.t �nite generating set S gives the
number of elements of G of S-length ≤ n.
Up to equivalence relation, γG (n) does not depend on S .

Types of growth (up to equivalence):
� γG (n) ≈ na, a ∈ N virtually nilpotent [Wolf,Bass,Guivarch; Gromov]
� γG (n) ≈ exp(n) e.g. free groups, not v.s. linear groups [Tits
alternative, '72]

� γG (n) is super-polynomial and sub-exponential: intermediate
growth [�rst examples by Grigorchuk, '85]

All known examples of groups ∈ IP are of exponential growth.

Question (Cornulier, '06)

Are there groups of intermediate growth in IP?
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Let T =rooted, in�nite binary tree, AutT=its group of
automorphisms.

Two subgroups of AutT

G1 = 〈a, β, γ, δ〉 G2 = 〈a, b, c , d〉
a = "swap" on level 1

β = (a, γ) b = (a, b)
γ = (a, δ) c = (a, d)
δ = (1, β) d = (1, c)
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Properties of these two examples

G1 = 〈a, β, γ, δ〉
� "Grigorchuk group"

� intermediate growth
[Grigorchuk, '85]

� torsion, 2-group
� /∈ IP [Pervova , '00]

G2 = 〈a, b, c , d〉
� "Grigorchuk�Erschler group"

� intermediate growth
[Grigorchuk, '85]

� not torsion, 〈a, b〉 ∼= D∞
� ∈ IP [F+G, '16]

Actually, we prove this for a larger family of "siblings of Grigorchuk's
group" de�ned by �uni¢. They are groups of automorphisms of the
p-regular tree for p any prime. The ones on the binary tree are all of
intermediate growth. We show that the non-torsion ones (which all
contain D∞) are in IP, by �nding ℵ0 �nitely generated maximal
subgroups of in�nite index.
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Main results [Francoeur + G, '16]

Theorem 1
Let G2 = 〈a, b, c , d〉 be as above (or one of its non-torsion "siblings").
Its maximal subgroups are:

� of index 2 (7 of them);
� H(q) = 〈(ab)q, b, c, d〉 for q odd prime, of in�nite index (ℵ0 of
them);

� possibly some more of in�nite index (at most ℵ0 of them)

Additional fact: Each H(q) is conjugate to G2 in AutT .
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All groups in �uni¢'s family (for all primes) are just in�nite (all proper
quotients are �nite).

Corollary

� G2 is a primitive permutation group (acts faithfully on cosets of

in�nite index maximal subgroup).

� G2 has trivial Frattini subgroup (Cfr. G1 has Frattini subgroup of

�nite index).
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How to �nd maximal subgroups of in�nite index?

Classical idea: �nd dense subgroups in pro�nite topology.

De�nition
The pro�nite topology of a group G has {N C G | |G : N| <∞} as
base of neighbourhood of the identity.

H ≤ G is dense if HN = G for every N C G with |G : N| <∞.

Fact
G has a maximal subgroup of in�nite index if and only if it has a
proper subgroup which is dense in the pro�nite topology.
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Pro�nite vs AutT topology

Step 1: Find proper dense subgroups of G2 in the pro�nite topology.

Problem: This means knowing ALL �nite index subgroups. How can
we get a hold of them? Obvious candidates: level stabilizers
{StG2(n) | n ∈ N}.

De�nition
A group G ≤ AutT has the congruence subgroup property if every
�nite index subgroup of G contains some level stabilizer StG (n).

Theorem [Francoeur+G, '16]

All �uni¢ groups (and G2 in particular) have the congruence subgroup
property.
In fact, every normal subgroup contains a level stabilizer.

So su�ces to �nd dense subgroup for AutT topology (=level
stabilizers form base of neighbourhoods of identity).
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Dense subgroups in AutT

Want: H < G2 such that H StG2(n) = G2 for each n ∈ N.

Nice application of Bézout's Lemma:

Lemma [P-H Leemann]

Let T be the rooted, in�nite d-regular tree and G ≤ AutT be
generated by g1, g2, . . . . Then, 〈gn1

1 , gn2
2 , . . . 〉 is dense in G for the

AutT topology for any n1, n2, · · · ∈ N coprime with d!.

Corollary

Let q be an odd integer, then H(q) = 〈(ab)q, b, c , d〉 is a dense

subgroup of G2 for the pro�nite topology.
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Dense subgroups are proper

Let q be an odd integer, then H(q) = 〈(ab)q, b, c , d〉 is a dense
subgroup of G2 for the pro�nite topology.

Step 2: Show that H(q) is a proper subgroup (indeed, taking the
same de�nition in G1 yields H(q) = G1).
Look at actions of H(q) and G2 on boundary of tree T . Su�ces to
consider orbit of ξ =rightmost ray. Thanks to copy of dihedral group
〈a, b〉, the orbit of ξ under G2 is isomorphic to Z. But the orbit under
H(q) is strictly smaller (corresponds to qZ):

. . .
ξ

a
c

b

a
d

b

a
c

b

a

b, c, d d d c c d d c
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Hq are maximal for q odd prime, not much more

Some technical work, using techniques similar to those of Pervova to
show:

Theorem
Let q be an odd prime, then H(q) is maximal and of in�nite index in

G2.

Theorem
There are at most ℵ0 maximal subgroups of in�nite index in G2.

They all map onto some H(q).
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Thank you!
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