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Vertex-primitive digraphs

A digraph on Ω is a binary relation on Ω.

(So we can have directed edges, loops, but not multiple edges.)

If the relation is symmetric, then the digraph is a graph.

An automorphism of a digraph is an adjacency-preserving
permutation of the vertex-set.

A digraph is vertex-primitive if its automorphism group is primitive.

Easy exercise: If a vertex-primitive digraph has distinct vertices
with the same neighbourhood, then it is empty or universal.



Vertex-primitive digraphs

A digraph on Ω is a binary relation on Ω.

(So we can have directed edges, loops, but not multiple edges.)

If the relation is symmetric, then the digraph is a graph.

An automorphism of a digraph is an adjacency-preserving
permutation of the vertex-set.

A digraph is vertex-primitive if its automorphism group is primitive.

Easy exercise: If a vertex-primitive digraph has distinct vertices
with the same neighbourhood, then it is empty or universal.



Vertex-primitive digraphs

A digraph on Ω is a binary relation on Ω.

(So we can have directed edges, loops, but not multiple edges.)

If the relation is symmetric, then the digraph is a graph.

An automorphism of a digraph is an adjacency-preserving
permutation of the vertex-set.

A digraph is vertex-primitive if its automorphism group is primitive.

Easy exercise: If a vertex-primitive digraph has distinct vertices
with the same neighbourhood, then it is empty or universal.



Vertex-primitive digraphs

A digraph on Ω is a binary relation on Ω.

(So we can have directed edges, loops, but not multiple edges.)

If the relation is symmetric, then the digraph is a graph.

An automorphism of a digraph is an adjacency-preserving
permutation of the vertex-set.

A digraph is vertex-primitive if its automorphism group is primitive.

Easy exercise: If a vertex-primitive digraph has distinct vertices
with the same neighbourhood, then it is empty or universal.



Vertex-primitive digraphs

A digraph on Ω is a binary relation on Ω.

(So we can have directed edges, loops, but not multiple edges.)

If the relation is symmetric, then the digraph is a graph.

An automorphism of a digraph is an adjacency-preserving
permutation of the vertex-set.

A digraph is vertex-primitive if its automorphism group is primitive.

Easy exercise: If a vertex-primitive digraph has distinct vertices
with the same neighbourhood, then it is empty or universal.



Vertex-primitive digraphs

A digraph on Ω is a binary relation on Ω.

(So we can have directed edges, loops, but not multiple edges.)

If the relation is symmetric, then the digraph is a graph.

An automorphism of a digraph is an adjacency-preserving
permutation of the vertex-set.

A digraph is vertex-primitive if its automorphism group is primitive.

Easy exercise: If a vertex-primitive digraph has distinct vertices
with the same neighbourhood, then it is empty or universal.



Synchronising groups

Let G be a permutation group and let f be a map on a set Ω.

The kernel of f is the partition of Ω into the inverse images of
points in the image of f .

The kernel type of f is the partition of |Ω| given by the sizes of the
parts of its kernel.

For example, if f (1, 2, 3, 4) = (2, 2, 3, 2) then f has kernel type
(3, 1).
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Synchronising groups II

We say that G synchronises f if the semigroup 〈G , f 〉 contains a
constant map, while G is said to be synchronising if G
synchronises every non-invertible map on Ω.

(Synchronising =⇒ primitive) but the converse is not true.

Theorem (Araújo, Cameron, 2014)

If G is primitive and f has kernel type (2, 2, 1, . . . , 1), then G
synchronises f .

They asked about the case when f has kernel type (3, 2, 1, . . . , 1).



Synchronising groups II

We say that G synchronises f if the semigroup 〈G , f 〉 contains a
constant map, while G is said to be synchronising if G
synchronises every non-invertible map on Ω.

(Synchronising =⇒ primitive) but the converse is not true.
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Vertices with almost the same neighbourhood

In their proof, vertex-primitive graphs having two vertices with
neighbourhoods “differing” by only one occur.

Question
What can we say about such a graph?

Examples

I Kn.

I Cp when p is prime.

A computer search suggested that, apart from Kn, all examples
have prime order.
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A little more notation

Let Γ be a vertex-primitive digraph, and let d be its out-valency.

Let Γi be the graph on the same vertex-set with two vertices being
adjacent if the intersection of their neighbourhoods in Γ has size
d − i .

Note that Γi really is a graph, and it is also vertex-primitive.

For example, Γ0 is the graph with two vertices adjacent if they
have the same neighbourhood.



A little more notation

Let Γ be a vertex-primitive digraph, and let d be its out-valency.

Let Γi be the graph on the same vertex-set with two vertices being
adjacent if the intersection of their neighbourhoods in Γ has size
d − i .

Note that Γi really is a graph, and it is also vertex-primitive.

For example, Γ0 is the graph with two vertices adjacent if they
have the same neighbourhood.



A little more notation

Let Γ be a vertex-primitive digraph, and let d be its out-valency.

Let Γi be the graph on the same vertex-set with two vertices being
adjacent if the intersection of their neighbourhoods in Γ has size
d − i .

Note that Γi really is a graph, and it is also vertex-primitive.

For example, Γ0 is the graph with two vertices adjacent if they
have the same neighbourhood.



A little more notation

Let Γ be a vertex-primitive digraph, and let d be its out-valency.

Let Γi be the graph on the same vertex-set with two vertices being
adjacent if the intersection of their neighbourhoods in Γ has size
d − i .

Note that Γi really is a graph, and it is also vertex-primitive.

For example, Γ0 is the graph with two vertices adjacent if they
have the same neighbourhood.



A consequence of a more general theorem

Let n be the order of Γ. Let κ be the smallest positive i such that
Γi 6= ∅.

Theorem (Spiga, Verret, 2015)

If Γ is a non-trivial vertex-primitive digraph on Ω, then either

1. Γ0 ∪ Γκ = Ω× Ω and (n − 1)(d − κ) = d(d − 1), or

2. there exists i ∈ {κ, . . . , d − 1} such that Γi has valency at
least 1 and at most κ2 + κ.

In case 1., n ≤ κ2 + κ+ 1 (apart from the trivial case κ ∈ {1, d}).

In particular, for any specific value of κ, this is a “finite” problem.
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κ = 1

In the case κ = 1, we are able to completely classify the digraphs.

Corollary

If G is primitive and f has kernel type (p, 2, 1, . . . , 1) with p ≥ 2,
then G synchronises f .

This was later proved independently by Araújo, Bentz, Cameron,
Royle and Schaefer.

It might be interesting to classify vertex-primitive digraphs with
κ = 2. (For its own sake and applications.)

Using our theorem, this would require classifying vertex-primitive
graphs of valency at most 6.
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Royle and Schaefer.

It might be interesting to classify vertex-primitive digraphs with
κ = 2. (For its own sake and applications.)

Using our theorem, this would require classifying vertex-primitive
graphs of valency at most 6.



κ = 1

In the case κ = 1, we are able to completely classify the digraphs.

Corollary

If G is primitive and f has kernel type (p, 2, 1, . . . , 1) with p ≥ 2,
then G synchronises f .

This was later proved independently by Araújo, Bentz, Cameron,
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Vertex-primitive graphs of valency 5

Vertex-primitive graphs of valency at most 4 were known (Li, Lu,
Marušič 2004).

Valency 5 : 7 sporadic graphs and 5 infinite families (Fawcett,
Giudici, Li, Praeger, Royle, V. 201?).

Along the way, we found all primitive groups with suborbits of
length 5.

The hardest case is when the point-stabiliser is isomorphic to A5 or
S5.

There are a few affine examples but we quickly reduce to the
almost simple case.

Difficult cases: exceptional groups of Lie type, Thompson sporadic
group.
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Marušič 2004).

Valency 5 : 7 sporadic graphs and 5 infinite families (Fawcett,
Giudici, Li, Praeger, Royle, V. 201?).

Along the way, we found all primitive groups with suborbits of
length 5.

The hardest case is when the point-stabiliser is isomorphic to A5 or
S5.

There are a few affine examples but we quickly reduce to the
almost simple case.

Difficult cases: exceptional groups of Lie type, Thompson sporadic
group.



Vertex-primitive graphs of valency 5

Vertex-primitive graphs of valency at most 4 were known (Li, Lu,
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Half-arc-transitive graphs

A graph is half-arc-transitive if its automorphism group is transitive
on edges and vertices but not on arcs.

It was known that there are no vertex-primitive half-arc-transitive
graphs of valency at most 8, but there are infinitely many examples
of valency 14.

We closed the gap: there are no examples of valency 10, but
infinitely many examples of valency 12.
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Finishing the case κ = 2

To finish this case, using our approach, we would need to find the
vertex-primitive graphs of valency 6.

This does not seem easy.

Given the graphs, one still needs to do some extra work.
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