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Quasi-static crack propagation in brittle materials

Which direction ?

• max hoop stress
• principle local symmetry
• max energy release rate (MERR)
• …
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If and when ?    Griffith's theory

energy release rate reaches a 
critical value 

G = Gc

Motivation
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Motivation
As discussed by Alain and Benoit, brittle 
materials with anisotropic surface 
energy challenge our understanding of 
fracture.

elastically isotropic

asotropic 
surface energy

Gurtin, Podio-Guidugli (98), 
Hakim, Karma (05-09) 
Chambolle, Francfort, Marigo (09),
…

Many man-made and natural materials 
exhibit a strongly anisotropic surface 
energy.

apple flesh

Khan, et al,1993Takei et al (13)
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Motivation

4 stress intensity factors (SIFs) (in-plane, bending, twisting)

Relation between SIFs and G? Path selection criterion?

Large geometric nonlinearity

Romero, et.al, 2013
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tearing adhesive film
Hamm,et.al, Nat Mater,2008

non-adhesive films
Romero,et.al, Soft matter, 2013Takei,et.al, PRL, 2013

anisotropic films

A wealth of controlled experiments. In some regimes, crack 
path is well-described by minimal models based on energetic 
arguments.

Motivation

Hypothesis: variational phase-field models of fracture may 
reproduce the observed phenomenology, and hence provide 
a general modeling framework.
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Outline

1. Phase-field modeling of fracture in materials with 
strongly anisotropic surface energy 

2. Phase-field modeling of fracture in brittle thin shells

3. Effect of shell geometry on crack propagation: 
            G for a thin shell



Anisotropic surface energy
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Ambrosio-Tortorelli (90), 
Bourdin, Francfort, Marigo (00) isotropic fracture energy
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Anisotropic phase-field fracture model
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Extended Cahn-Hilliard interface model

Cahn and Hilliard (58)
Abinandanan and Haider (01)
Torabi, Lowengrub (12)
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quadratic terms

We focus on quadratic terms and cubic symmetry in 2D 

`ij = ` �ij �ijkl has 3 independent coefs



Anisotropic phase-field fracture model
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Fourth-order phase-field model with anisotropic surface energy

Bin Li, et.al, IJNME.2014
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Fourth-order model by Borden et al (14) is a particular case.



Resulting anisotropic surface energy
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surface stiffness

convex surface energy

nonconvex surface energy

S < 0

S > 0

�D� �E� �F�

strong  
anisotropy

weak  
anisotropy

cubic symmetry

�D� �E� �F�inverse polar plot 

S > 0 S < 0
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y Fixed material 
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(a) (b)
x

u

geometry and BCs inverse polar plot 
of surface energy

elasticity is isotropic

Simulations
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4th order PDE approximated with a Galerkin method based on 
smooth local maximum entropy (LME) meshfree basis functions.

Arroyo, Ortiz, IJNME, 2006

Alternate minimization algorithm 



Simulations
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(a) (b) 

convex hullforbidden 
directions

Systematic dependence of crack propagation 
on material orientation   
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S(✓) = 0
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Guided crack propagation

fully constrained  displacement 
field at top and bottom bands ZigZag crack path
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Takei,et.al, PRL, 2013

fully constrained  displacement 
field at top and bottom bands
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Guided crack propagation
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summary
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1. Variational anisotropic phase-field formulation that can 
model the strongly anisotropic surface energy. 

2. The numerical results exhibit the features of strongly 
anisotropic fracture. 

1. What kind of angle dependence of         that can be

     described with the model, including all the 4th order tensors. 

2. Understand the energetic penalty for crack kinking implicit in

the phase-field model. 

3. Model other symmetries, 3D…

G(✓)

many questions
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Outline

1. Phase-field modeling of fracture in materials with 
strongly anisotropic surface energy

2. Phase-field modeling of fracture in brittle thin 
shells 

3. Effect of shell geometry on crack propagation: 
            G for a thin shell



phase-field model for 
(adhesive) thin sheets
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Adhesion energy: cohesive zone model
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Model for fracture in thin adhesive shells:

min
u,v

⇧[u, �] v̇  0subject to (irreversibility)

⇧[u, �] = ⇧ela[u, v] +⇧adh[u] +⇧fra[�],

phase-field model for 
(adhesive) thin sheets



Numerical implementation  

4th-order PDE (shell and phase-field), C1 approximation is required
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Subdivision surface finite elements

v̇  0
Miehe,et.al,CMAME,2010

Irreversibility is implemented by strain-history function

Displacement of shell is solved by Newton’s method.

Alternate minimization algorithm. 
Bourdin,Interface Free Bound,2007

smooth approximation
for u

Cirak,et.al, IJNME, 2000, 2011

vand



buckling vs fracture



buckling vs fracture
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fracture without 
significant deformation

fracture with slight 
buckling

fracture and prominent 
buckling

Gc/(tE)



buckling vs fracture
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Spiraling tearing of thin sheets
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pulling

crack tip

initial cut

(a) (b)

annulusRomero, et.al, Soft Matter, 2013



Spiraling tearing of thin sheets
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One-flap tearing of thin sheets

decreases down to the value ! ¼ 34" at the merging point.
This transition seems to be related to the appearance of
plastic deformations. If ! decreased to zero, the fracture
surfaces would be parallel to the sheet surfaces, and the
configuration would resemble the peeling of an adhesive
strip, in which two notches lead to triangular strips [12].
This remark might account for a linear behavior of yðxÞ for
small x. Finally, we nondimensionalized the profile yðxÞ by
using the thickness h as a unit [Fig. 2(c)], which yields a
fair collapse of the data. However, we were unable to
obtain reproducible results with the smallest thickness,
h ¼ 30 "m, for which the crack paths are very sensitive
to the forcing. As a consequence, the range in thickness is
too narrow to rule out other small-scale characteristic
lengths.

In a second step, we considered a less symmetric, peel-
like experimental configuration. This configuration is simi-
lar to that of [12], but in our case there is no adhesion
between the sheet and the substrate. We expected that the
prefactors of the power-law paths would change in this
configuration and we aimed at understanding the behavior
of these prefactors. A long sheet of width W is clamped
along its lateral boundaries to a thick wooden plate, using
narrow adhesive tapes [Fig. 3(a)]. Two parallel notches are
initially made at a distance w one from another at one end
of the sheet. The central strip is pulled horizontally, so that
the two tears propagate quasistatically. In contrast with the
first configuration, the distance between the pulling point
and the crack tips increases, but this macroscopic length
appears to be unimportant in the following results. As the
tears advance, the distance between the two tips decreases
from w to 0, when they annihilate each other and the ce-
ntral strip detaches. The resulting shape yðxÞ [Fig. 3(b)] is
qualitatively similar to those of the first setup. The shapes
of various detached strips are shown in Fig. 4(a). Again, all

realizations are superimposed for a given value of thick-
ness, indicating that the large-scale geometry of the setup
is unimportant for path selection. Over 2 orders of magni-
tude, the curves yðxÞ are well described by a power law
of exponent 0:77% 0:05 and prefactors (0:82% 0:06,
1:2% 0:2, and 1:53% 0:2) that increase with thickness.
We were surprised to find different exponents, which mo-
tivated the scaling analysis presented below. As in the first
setup, the tip of the central strip undergoes plastic flow, but
over a smaller length (& 1 mm). However, we have not
found any signature on the crack paths. Finally, we non-
dimensionalized the profile yðxÞ using the thickness h as a
unit [Fig. 4(b)], which provides a satisfying collapse of
the data.
Overall, the propagation of the two tears leads to a

topological change such that the cracks annihilate each
other and the central strip detaches. The crack paths
seem to follow well-defined power laws. In order to explain
this behavior, we consider the ridge joining the two tips,
which is one form of energy localization in thin sheets [1]

FIG. 3. The peel-like configuration. (a) Schematic of the ex-
periment. Two notches are initiated in a rectangular long sheet
clamped along its lateral boundaries. The central strip is pulled
horizontally at constant velocity until it detaches when the two
tears converge. (b) Tonguelike shape of the detached strip,
defined by yðxÞ.
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FIG. 4 (color online). Crack paths in the peel-like configura-
tion. (a) Shape of the central strip: width y as a function of
longitudinal coordinate x; see Fig. 3(b) for definitions. The
widths for the values of the thickness 30 and 90 "m were
divided and multiplied by 10, respectively, for clarity. The colors
of the symbols correspond to different realizations. A power law
of exponent 3=4 is shown for comparison. (b) The curves in (a)
were made nondimensional using the sheet thickness h as a unit.
Light gray (green), black, and dark gray (red) symbols corre-
spond to h ¼ 30, 50, and 90 "m, respectively.

PRL 106, 194301 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
13 MAY 2011

194301-3

Y ⇠ X(0.77±0.05)

Bayart,et.al, PRL, 2011
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One-flap tearing of thin sheets

decreases down to the value ! ¼ 34" at the merging point.
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surfaces would be parallel to the sheet surfaces, and the
configuration would resemble the peeling of an adhesive
strip, in which two notches lead to triangular strips [12].
This remark might account for a linear behavior of yðxÞ for
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h ¼ 30 "m, for which the crack paths are very sensitive
to the forcing. As a consequence, the range in thickness is
too narrow to rule out other small-scale characteristic
lengths.
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prefactors of the power-law paths would change in this
configuration and we aimed at understanding the behavior
of these prefactors. A long sheet of width W is clamped
along its lateral boundaries to a thick wooden plate, using
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the two tears propagate quasistatically. In contrast with the
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qualitatively similar to those of the first setup. The shapes
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tude, the curves yðxÞ are well described by a power law
of exponent 0:77% 0:05 and prefactors (0:82% 0:06,
1:2% 0:2, and 1:53% 0:2) that increase with thickness.
We were surprised to find different exponents, which mo-
tivated the scaling analysis presented below. As in the first
setup, the tip of the central strip undergoes plastic flow, but
over a smaller length (& 1 mm). However, we have not
found any signature on the crack paths. Finally, we non-
dimensionalized the profile yðxÞ using the thickness h as a
unit [Fig. 4(b)], which provides a satisfying collapse of
the data.
Overall, the propagation of the two tears leads to a

topological change such that the cracks annihilate each
other and the central strip detaches. The crack paths
seem to follow well-defined power laws. In order to explain
this behavior, we consider the ridge joining the two tips,
which is one form of energy localization in thin sheets [1]
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periment. Two notches are initiated in a rectangular long sheet
clamped along its lateral boundaries. The central strip is pulled
horizontally at constant velocity until it detaches when the two
tears converge. (b) Tonguelike shape of the detached strip,
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One-flap tearing of thin sheets

(b)
zoom in

stretching ridges 
Witten, 2007
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Tearing with Adhesion
Hamm, Reis, LeBlanc, 
Roman, Cerda
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Hamm,et.al Nat Mater, 2008
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Hamm,et.al, Nat Mater, 2008, 
Roman, IJF, 2013
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Sheet adhered to flat substrate
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top view

stretching energy density

weak adhesion 
point (a)
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change peeling angle

cohesive length-scale 
plays a significant role 



adhered on curved substrate

Sheet adhered on cylinder substrate

negative  
curvature

positive  
curvature

opening or closing tears 
depending on sign of curvature 

Kruglova,et.al, PRL, 2011
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adhered on curved substrate

Sheet adhered on cylinder substrate

negative  
curvature

positive  
curvature

opening or closing tears 
depending on sign of curvature 

Kruglova,et.al, PRL, 2011
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Conclusions
1. Simple modeling and computational strategy for brittle fracture 

in thin elastic sheets accounting for geometric nonlinearity and 
adhesion.

2. Our simulations reproduce crack patterns observed in tearing 
experiments remarkably well.

3. Variational models of fracture naturally extend to thin shells. 
Good starting point to understand fracture in thin shells.
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Outline

1. Phase-field modeling of fracture in materials with 
strongly anisotropic surface energy

2. Phase-field modeling of fracture in brittle thin shells

3. Effect of shell geometry on crack propagation:  
            G for a thin shell
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Calculation of G

⇧[u✏] =

Z

⌦0

W ( �1
✏ (X),u) d⌦0

⇧ [u] =

Z

⌦0

W (X,u) d⌦0

heterogeneity 

“crack”

material frame“X”

Consider a material 
rearrangement “moving” 
the crack

 ✏(X)
 0 = Id

⇧✏[u]

Configurational 
force field

G = � d

d✏

����
✏=0

⇧✏[u✏] = � d

d✏

����
✏=0

Z

⌦0

W ( �1
✏ (X),u✏)d⌦0

=

Z

⌦0

J · V d⌦0

J = div B

Eshelby tensor



Calculation of G for a shell
Intrinsic formulation for a geometrically linear Koiter shell

heterogeneity 



44

heterogeneity 
due to crack

heterogeneity 
due to curvature

⇧✏[u, w] =

Z

⌦̄
W̃ ( �1

✏ (⇠), b,rb,u,ru, w,r2w)
p
a d⌦̄,

material rearrangement “moving” the crack

Z

⌦̄
W̃ ( �1

✏ (⇠), b( �1
✏ (⇠)),rb( �1

✏ (⇠)),u,ru, w,r2w)
p
a d⌦̄,

material rearrangement “moving” the crack and bumps

Calculation of G for a shell
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Configurational forces field

J� = M�
�|� +KĴ� + J̃� .

non uniformity 
of curvature

Gaussian
curvature

divergence
of Eshelby tensor

G = � d

d✏

����
✏=0

⇧✏[u✏, w✏]

= � d

d✏

����
✏=0

Z

⌦̄
W̃ ( �1

✏ (⇠), b,rb, u✏,ru✏, w✏,r2w✏)
p
a d⌦̄.

Calculation of G for a shell

Infinitesimal deformations but finite geometry



Calculation of G for a shell
Configurational forces field

J� = M�
�|� +KĴ� + J̃� .

non uniformity 
of curvature

Gaussian
curvature

divergence
of Eshelby tensor
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crack

bump
z

x
y

A

D

E

G
F

B

C
u=(0,+δ) w=0 w,y=0

u=(0,-δ) w=0 w,y=0

non uniformity 
of curvature

Gaussian curvature

“non-uniform” V

G =
1

||a
1

||
tip

G
no bump

+GK +Gb

�
Z

⌦

M�
� V �

|� d⌦+

Z

EF[FG
m↵�w|�V

�
|↵⌫� d`,

V velocity of the microstructure

Calculation of G for a shell



Summary

1. Focusing on linear Koiter’s thin shell theory, we have obtained 
expressions for the configurational force-field and for the 
energy release rate of a plate with a pre-crack and a finite 
shape disturbance. 

2. We hope to get insight from these expressions, and possibly 
provide an understanding of how geometry affects crack 
propagation.
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