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Micro-force Balance Approach
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Phase-field Approach to Hydraulic Fracture
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Mass Balance

Solid mass balance: D (1—o)p°J ] =0
Dt
: . D f f — fa3 fo3

Fluid mass balance: E[qbp J+g (n)p’'(1— ¢)<J - 1>] = —(p wI)’I + p'm

1 : w<0 Effective porosity: ¢ = ¢ + g (n)(1— ¢)<J — 1> r;
g, (W=11=-38u"+2p° ;5 0<pu<1

0 ; p>1 . Dy ;- ;o

Fluid mass balance =- E[p qu] = —(p wI)’I +p

¢ = porosity

p°,p’ = solid and fluid densities

i = phase-field parameter

J = determinant of the deformation gradient F

w F

K iK

J

m = fluid volume injected per unit reference volume

w = nominal fluid flux w, =
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Momentum and Micro-force Balances

Effective porosity: ¢ = ¢ + g (p)1— ¢)<J — 1>%

Aggregate momentum: P, + Ei =(1—¢)p’Jv, + q_bpr(vi + vif/s)+ q_bpr('vz. + vf/s) . FI;jlvf/s

Fluid momentum: (4T, ), + bl + ¥ = q_bpr('v. + 'v.f/s)+ ggpr('v. + 'v.f/s) FI;,jlv;/S (Navier-Stokes)
17 (2 (3 7 1 1 1 ,K

Solid momentum: (P, —¢T ), + 5: — j~';sf =(1—¢)Jp°v, (Newton's 2nd Law for the Solid)

a-ap;],

Micro-force balance: é T Y+7=0 (Governs changes and evolution of the phase-field)

D _ .
v, = E[u’] = velocity of the aggregate

w,
L= vlf /* = average fluid velocity relative to the aggregate

<

P, = 1st Piola-Kirchhoff stress for aggregate

(7, — péij)JFI;j1 = T, . = 1st Piola-Kirchhoff stress for the fluid
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A Biot-type Formulation with Phase-field
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Constitutive equations developed using the First and Second Laws of Thermodynamics
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Reduced Fluid Momentum (Brinkman Equation)

Low Reynolds Number Flow

(inertial terms are neglected)
($TJi),J + Ez'f + fiSf —

Linearized Compressibility

Constitutive relations satisfying the

dissipation inequality for the fluid
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Numerical Results and
Validation
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Flow Through an Opening Channel
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Viscosity Scaling
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Viscosity Scaling

Total Flux vs. Crack Aperture (k/€2 = 10714)
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Consolidation with Fluid Loading
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Pressurized Center Crack
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Plane Strain Crack
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Parallel Cracks
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Merging Cracks
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Summary

= Cracks are represented by a diffuse phase-field and
have been shown to be capable of representing
interesting geometrical evolution.

= Thermodynamically consistent models have been
developed using a balance law approach to model
crack propagation fluid saturated poroelastic media

= The approach has been shown to compare favorably
to several simple benchmark solutions.
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