
Spacetime Interfacial Damage Model for Dynamic 
Fracture in Brittle Materials 

R. B. Haber1 and R. Abedi2
1Mechanical Science & Engineering; University of Illinois at Urbana-Champaign

2Mechanical, Aerospace, & Biomedical Engineering; University of Tennessee Space Institute

Variational Models of Fracture
Banff International Research Station for Mathematical Innovation and Discovery  

Alberta, CA –– 8 - 13 May 2016



Catastrophe at the Tate Modern 
(London art museum)



Spacetime discontinuous Galerkin 
methods for hyperbolic systems

• Spacetime DG discretization

‣ Replaces time integration

‣ Ensures per-element conservation

‣ Enforces weak spacetime jump conditions 

‣ Uses Riemann solutions for stability and to 
preserve characteristic structure

• ALE+

‣ Unstructured grids graded in space and time 

‣ Powerful adaptive remeshing with no 
projections ensures high-order accuracy

‣ No mesh tangling for moving boundaries

• Asynchronous solver

‣ O(N) complexity

‣ Scalable parallel meshing and local solves
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Causal Spacetime Mesh and O(N) 
Advancing-Front Solution Strategy 
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Tent Pitcher: 
causal spacetime meshing

tim
e

causality constraint

tent–pitching sequence

Given a space mesh, Tent Pitcher 
constructs a spacetime mesh such 
that every facet on sequence of 
advancing fronts is spacelike (patch 
height bounded by causality 
constraint)

Similar to CFL condition, except 
entirely local and not related to 
stability (required for O(N) solution)



Tent Pitcher: 
patch–by–patch meshing & solution

Patches (‘tents’) of tetrahedra; solve immediately for O(N) method 
with rich parallel structure

Maintain “space mesh” as advancing, space-like front with non-uniform 
time coordinates
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Adaptive refinement
Newest vertex refinement of space mesh maintains element quality

Supports nonconforming spacetime meshes
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Spacetime adaptive meshing operations
New spacetime adaptive meshing operations:

Vertex deletion (coarsening); Edge flip; Inclined tent 
poles (ALE, smoothing, tracking and repositioning)

Spacetime format eliminates projection error

Preserves high-order accuracy during remeshing



Crack-tip Wave Scattering



Crack-tip Wave Scattering



Crack-tip Wave Scattering



Crack-tip Wave Scattering



Near-perfect parallel scaling



Spacetime fields 
[0,1, d, and (d+1)-forms]

• Displacement (0-form): u

• Strain-velocity (1-form): " := E + v

– Linearized strain + velocity

• Spacetime Momentum Flux (d-form): M := p� S

– Linear momentum density - stress

• Body force density ((d + 1)-form): b



Momentum Balance
• Integral form of linear momentum balance:
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(dM � ⇢b) = 0 8Q ⇢ D (Stokes Thm.)

• Local form with jump part:

(dM � ⇢b)|D\�J = 0

[[M ]]|D\�J = 0 7! (M⇤ �M)|Q\�J = 0

M⇤
= Riemann or prescribed value



Kinematic compatibility

• Displacement-strain-velocity:

du� " = 0 in V⇤
M (" is exact)

[[u]] |D\�J
= 0 7! (u⇤ � u)|D\�J

= 0

• Admissible strain-velocity:

d" = 0 in V⇤
iM (" is closed)

[["]] |D\�J
= 0 7! ("⇤ � ")|D\�J

= 0

"⇤ = Riemann or prescribed value



1-field SDG formulation
Problem (Weighted residual form). Find u 2 Vu 3
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Problem (Weak form). Find u 2 Vu 3
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time-invariant, infinitesimal-rigid deformations.



3-field SDG formulation
Problem (Weighted residual form). For each Q 2 P, find

(u, ") 2 Vu ⇥ V" such that for every Q 2 P
Z

Q

h
i

ˆ" ^ (dM � ⇢b) + d" ^ i

ˆM + (du� v) ^ ˆf
i

+

Z

@Q

h
i

ˆ" ^ (M⇤ �M) + ("⇤ � ") ^ i

ˆM + (u

⇤ � u) ^ ˆf
i

= 0

8 (

ˆ

u, ˆ") 2 Vu ⇥ V"

in which

ˆf = kQ1(

ˆ

u)?dt.

Problem (Weak form). Find (u, ") 2 Vu ⇥ V" such that
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Convergence of 1-field model

  

displacement strain (velocity)



Convergence of 3-field model

  

displacement strain (velocity)

3-field model: optimal convergence in all three fields



Efficiency Study; d=2

displacement strain (velocity)

  

3-field model runs about 4x faster



Target Values: Initial/Boundary Conditions,
Riemann Solutions, and Cohesive Model

Unified framework preserves characteristic structure

Simple extension to implement cohesive model

M⇤
=

8
>>>>>><

>>>>>>:

M on outflow and prescribed-" boundaries

¯M on initial & prescribed-M domain boundaries

M+
on interior element inflow boundaries

MR
on non-causal & non-cohesive interior boundaries

MTSL
on cohesive interfaces
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¯" on initial & prescribed-" domain boundaries

"+ on interior element inflow boundaries

"R on non-causal & non-cohesive interior boundaries



Center–Cracked Tension Specimen

Initial mesh at t=0

Geometry and boundary conditions



Cohesive Crack Propagation Reveals 
Quasi-Singular Velocity Field

�C = 0.1E



Quasi-singular Material Velocity 
Velocity magnitude vs. radial distance from crack tip; t = 4µs 
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Singular velocity response?

• Verified non-singular core within process zone

• Two length scales (radii): rp(t) of process zone, and 
rs(t) of singular-dominant zone for a sharp crack

• No evidence of singular response when rs < rp

• Follows singular form where r is in [rp, rs] when rp 
<< rs.
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Continuum contact model
Abedi and Haber, “Riemann solutions and spacetime discontinuous Galerkin method 

for linear elastodynamic contact,” CMAME 270 (2014) 150–177.

• Full set of Riemann solutions for frictional contact 
(separation, contact–stick, contact–slip)

• Isotropic Coulomb friction law

• Eliminates spurious discontinuous response; only 
separation-to-contact transition requires regularization

• Solutions are free of the usual oscillations

• Characteristic structure is preserved (vs. quasi-static 
contact conditions)

• Precludes interpenetration without additional constraints

• Models crack closure in SDG fracture models



Square-Plate Impact Example
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Brake Dynamics Example
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Crack closure:   cyclic, mixed-mode, 
dynamic loading
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Interfacial damage model for fracture

• Damage parameter φ interpolates between intact (I) 
and debonded (D) Riemann solutions (debonded case 
includes separation and all contact modes)

• No interfacial stiffness, no traction–separation relation

• Delay damage evolution model with relaxation time τ

• Probabilistic flaw model nucleates new fracture surfaces

s⇤ = (1� ')sI + 'sD

p⇤
= (1� ')pI + 'pD

[[pI]] = 0; sD = 0 for unloaded, open cracks
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Dynamic fracture with damage-
delay interfacial failure model



Dynamic fracture with modified 
damage-delay cohesive model



Spall formation under symmetric axial loading



Spall formation under symmetric axial loading

Meyers and Aimone, “Dynamic fracture of 
(spalling) metals,” Prog. Materials Sci. 28, 1983.



Well bore subjected to ‘explosive’ load
Short-duration, shock-like pulse on bore walls

No initial bore perforations



Well bore subjected to ‘explosive’ load
Short-duration, shock-like pulse on bore walls

No initial bore perforations



Well bore subjected to fast-ramp load
Bore has four initial perforations 

Load ramps to sustained pressure on bore, perforations & cracks



Well bore subjected to fast-ramp load
Bore has four initial perforations 

Load ramp to sustained pressure on bore, perforations & cracks



Flaw Orientation Study
Load ramps to sustained pressure on initial horizontal crack



Flaw Orientation Study
Uniform orientation distribution

Load ramps to sustained pressure on initial horizontal crack



Flaw Orientation Study
Probabilistic flaw model biased to 30°

Load ramps to sustained pressure on initial horizontal crack



Conclusions

• Advantages/Disadvantages

★ Excellent performance for strictly hyperbolic problems / can’t yet 
handle systems with elliptic (e.g., quasi-statics) or parabolic equations

★ Rare example where adding dofs (polynomial order, multi-field) in DG 
improves efficiency.

★ Powerful adaptive meshing capability does not limit order of accuracy

★ Enforcing Riemann solutions improves stability and provides robust 
mechanism for modeling initial, boundary, contact conditions + fracture

★ Sharp-interface fracture model removes some ambiguities / novel 
constrained spacetime meshing problem … 3d x time???

★ Asynchronous, embarrassingly parallel structure for HPC

★ Probabilistic nucleation model addresses heterogeneities and offers 
alternative mechanism for branching



SDG in 3d x time:  
Elastic wave scattering by penny-shaped crack


