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Irreversible diffusion system and crack propagation model

I Irreversible diffusion equation (Unidirectional evolution)

ut =
(
∆u + f (x , t)

)
+

x ∈ Ω ⊂ Rn, t > 0

I Irreversibility ut ≥ 0 (a)+ := max(a, 0))

I Gradient flow structure
d

dt
E (u(·, t)) = −

∫
Ω

|ut |2 dx ≤ 0

E (u) :=
1

2

∫
Ω

|∇u|2 dx −
∫

Ω

fu dx

（if u|∂Ω = 0，f = f (x)）
I A crack propagation model [Takaishi-Kimura 2009]

I A phase field variable (damage variable) z(x , t) ∈ [0, 1] for
crack position: z ≈ 0: no crack, z ≈ 1: crack

I Derived as a gradient flow of [elastic energy + surface energy].
I Non-repairability of crack is expressed as

zt = (∆z + g(z , |∇u|))+.

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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mode III crack propagation model [Takaishi-Kimura 2009]

Ω：R2: bdd domain ∂Ω = Γ = ΓD ∪ ΓN : smooth
u(x , t) ∈ R: antiplane displacement，z(x , t) ∈ [0, 1]: damage
variable
γ(x) > 0: fracture toughness g(x , t): α, ε > 0,

div
(
(1 − z)2∇u

)
= 0 (x ∈ Ω, t > 0)

αzt =

(
ε div (γ(x)∇z) − γ(x)

ε
z + |∇u|2(1 − z)

)
+

(x ∈ Ω, t > 0)

u = g(x , t) (x ∈ ΓD , t > 0)

∂u

∂n
= 0 (x ∈ ΓN , t > 0)

∂z

∂n
= 0 (x ∈ Γ, t > 0)

z(x , 0) = z0(x) ∈ [0, 1] (x ∈ Ω)

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Elasticity eq.(anti-plane displ.) in a cracked domain

±ΣΓ=
∂

∂
Γ=
ΣΩ=Δ−

 & on            0

on              
\in     

N

D

n
u
gu

fuµ

DΓ

DΓ

Σ

ΣΩ \
NΓ

NΓ

−µ  div((1− z)2∇u) = f    in Ω
u = g             on ΓD

∂u
∂n

= 0           on ΓN

DΓ

DΓ

Σ
ΣΩ \

1≈z
0≈z

Approximation by z	
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Irreversibility (Non-repairability) and gradient flow

I Non-repairability of crack is expressed by zt = (· · · )+.
I Ambrosio-Tortorelli approximation of Griffith-Francfort-Marigo

energy:

E(z) := min
u|ΓD

=g

(
1

2

∫
Ω

(1 − z)2|∇u|2 dx

)
+

1

2

∫
Ω

γ(x)

(
ε|∇z |2 +

1

ε
z2

)
dx

elastic energy regularized surface energy

I Gradient flow stracture (if gt = 0)

d

dt
E(z(·, t)) = −

∫
Ω

{
ε div (γ(x)∇z) − γ(x)

ε
z + |∇u|2(1 − z)

}
zt dx

= −α
∫

Ω

|zt |2 dx ≤ 0

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model



. . . . . .

Introduction
Phase field model for crack propagation

Irreversible diffusion equation

Numerical examples

Method	
  and	
  parameters	


•  Numerical	
  method	
  
–  Implicit	
  scheme	
  
– ALBERTA	
  :	
  Adap;ve	
  
mesh	
  FEM	
  

•  Parameters	
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A straight crack

max(mesh number) min(mesh size) min(τ) max (τ)
i) 8192 0.005524 0.001477 0.089005
ii) 40824 0.001953 0.001407 0.066417
iii) (a) 18496 0.002762 0.001477 0.063254
iii) (b) 17788 0.002762 0.001477 0.069738
iv) (a) 128856 0.001953 0.001407 0.088783
iv) (b) 114264 0.000691 0.001407 0.098128

Table 1: Computational data on adaptive mesh

t = 0 t = 5 t = 10 t = 20

Figure 1: Birdviews of u(top), u (middle) and z (bottom).

5

Figure: u and |∇u| (top), u (middle), z (bottom)
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Merging two cracks

At t = 0 we set two cracks on the left-hand side boundary with the same length. If the length is
long enough, they reach to the right-hand side boundary. They, however, merge into one crack when the
length of the two cracks is not enough long (Figure 2).

t = 0 t = 5 t = 10 t = 20

Figure 2: Birdviews of u(top), u (middle) and z (bottom) in the temporal evolution of the cracks when
initial length of cracks is 0.5.

iii) Two cracks in the alternated directions (γ = 0.5)
When we set two cracks that one starts from the left-hand side boundary and another starts from the

right-hand side boundary, then crack growth patterns are classified in three cases. Only when the initial
cracks are sufficiently long, they reach the opposite boundaries (Figure 3 (a)). If we set sufficiently short
cracks in alternative directions, as we can easily imagine, they reach and connect to each other. But, in
some middle length case, a subcrack (side-branched crack) appears (Figure 3 (b)).
iv) One crack with variable fracture toughness (γ = γ(x))

We show the results of two cases that the fracture toughness varies in the plane. The crack is going to
the straight way, however, on the way to another side the front of crack find the weak (small toughness)
point and turn into there. We set γ as (a) a checkerboard pattern (γ(x) = 0.5(1 + 0.2 cos 10x · cos 10y))
and (b) a stripe pattern (γ(x) = 0.5(1+0.2(cos 10x+cos 10y))). Figure 4 shows that the crack propagates
to the right-hand side boundary through the weaker points of γ.

6

Figure: u and |∇u| (top), u (middle), z (bottom)
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Two straight cracks
t = 0 t = 5 t = 10 t = 20

(a)

t = 0 t = 5 t = 10 t = 20

(b)

Figure 3: Birdviews of u(top), u (middle) and z (bottom) in the temporal evolution of the cracks with
initial cracks of length (a) 1.8 and (b) 1.7 .

7

Figure: u and |∇u| (top), u (middle), z (bottom)
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Subcrack beyween two straight cracks

t = 0 t = 5 t = 10 t = 20

(a)

t = 0 t = 5 t = 10 t = 20

(b)

Figure 3: Birdviews of u(top), u (middle) and z (bottom) in the temporal evolution of the cracks with
initial cracks of length (a) 1.8 and (b) 1.7 .

7

Figure: u and |∇u| (top), u (middle), z (bottom)
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Checker pattern fracture toughness γ(x) = 0.5(1 + 0.2 cos 10x cos 10y)
t = 0 t = 5 t = 10 t = 20

(a)

t = 0 t = 5 t = 10 t = 20

(b)

Figure 4: Birdviews of u(top), u (middle) and z (bottom) in the temporal evolution of the cracks when
(a) γ(x) = 0.5(1 + 0.2 cos 10x · cos 10y) and (b) γ(x) = 0.5(1 + 0.2(cos 10x + cos 10y)).

8

Figure: u and |∇u| (top), u (middle), z (bottom)
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Stripe pattern fracture toughness γ(x) = 0.5(1 + 0.2 cos 10(x + y))

t = 0 t = 5 t = 10 t = 20

(a)

t = 0 t = 5 t = 10 t = 20

(b)

Figure 4: Birdviews of u(top), u (middle) and z (bottom) in the temporal evolution of the cracks when
(a) γ(x) = 0.5(1 + 0.2 cos 10x · cos 10y) and (b) γ(x) = 0.5(1 + 0.2(cos 10x + cos 10y)).

8

Figure: u and |∇u| (top), u (middle), z (bottom)
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crack propagation model in 3D
Ω：R3: bdd domain, ∂Ω = Γ = ΓD ∪ ΓN : smooth
u(x , t) ∈ R3: displacement，e[u] ∈ R3×3: strain tensor,
σ[u] = Ce[u] ∈ R3×3: stress tensor,
z(x , t) ∈ [0, 1]: damage variable,
γ(x) > 0: fracture toughness, g(x , t), α, ε > 0: given

div
(
(1 − z)2σ[u]

)
= 0 (x ∈ Ω, t > 0)

αzt =

(
ε div (γ(x)∇z) − γ(x)

ε
z + σ[u] : e[u](1 − z)

)
+

(x ∈ Ω, t > 0)

u = g(x , t) (x ∈ ΓD , t > 0)

σ[u]n = 0 (x ∈ ΓN , t > 0)

∂z

∂n
= 0 (x ∈ Γ, t > 0)

z(x , 0) = z0(x) ∈ [0, 1] (x ∈ Ω)

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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3D numerical simulation


div

(
(1 − z)2σ[u]

)
= 0

αzt =

(
ε div (γ(x)∇z) − γ(x)

ε
z + σ[u] : e[u](1 − z)

)
+

Figure: an example of 3D simulation, time increases from left to right

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Irreversible diffusion equation and strong solution
Ω ⊂ Rn: bdd domain, Γ = ∂Ω: smooth

ut =
(
∆u + f (x , t)

)
+

(x , t) ∈ Q := Ω × (0,T ),

u(x , t) = 0 (x , t) ∈ Γ × (0,T ),
u(x , 0) = u0(x) x ∈ Ω.

(1)

.
Definition 1 (strong solution)
..

......

Let f ∈ L2(Q), u0 ∈ L2(Ω). u is called a strong solution of (1) iff

(a) u ∈ H1(0,T ; L2(Ω)) ∩ L2(0,T ; H2(Ω) ∩ H1
0 (Ω))

(b) ut =
(
∆u + f

)
+

Hn+1-a.e. in Q

(c) u(0, ·) = u0 ∈ L2(Ω)

Remark) Definition of the weak solution (H1 sol.) has problems.
Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Main results I

.
Theorem 2 (complementarity form)
..

......

u is a strong solution of (1) iff

(c1) u ∈ H1(0,T ; L2(Ω)) ∩ L2(0,T ; H2(Ω) ∩ H1
0 (Ω)),

(c2) ∂tu ≥ 0 a.e. in Q,

(c3) ∂tu − ∆u − f ≥ 0 a.e. in Q,

(c4) (∂tu − ∆u − f ) ∂tu = 0 a.e. in Q,

(c5) u(0, ·) = u0.

.
Theorem 3 (uniqueness)
..

......A strong solution of (1) is unique, if it exists.

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Main results II

.
Theorem 4 (existence)
..

......

We suppose u0 ∈ H2(Ω) ∩ H1
0 (Ω) and f ∈ L2(Q). If there exists

f ∗ ∈ L2(Ω) with f (x , t) ≤ f ∗(x) a.e. in Q, then there is a strong
solution of (1).

.
Theorem 5 (comparison principle)
..

......

Let ui (i = 1, 2) be a strong solution of (1) with
u0 = ui

0 ∈ H2(Ω) ∩ H1
0 (Ω)，f = f i ∈ L2(Q), respectively. We

suppose that there exists f ∗ ∈ L2(Ω) with f i (x , t) ≤ f ∗(x)
a.e. in Q (i = 1, 2). If u1

0 ≤ u2
0 a.e. in Ω and f 1 ≤ f 2 a.e. in Q,

then u1 ≤ u2 a.e. in Q holds.

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Main results III

.
Theorem 6 (asymptotic behavior)
..

......

If f ∈ L2(Ω), then there exists ū ∈ H2(Ω) ∩ H1
0 (Ω) such that

lim
t→∞

‖u(·, t) − ū‖H1(Ω) = 0,

where ū is given as a unique solution of the following variational
inequality:

ū ∈ K := {v ∈ H1
0 (Ω); v ≥ u0 a.e. in Ω},∫

Ω
∇ū · ∇(v − ū) dx ≥ 〈f , v − ū〉 (∀v ∈ K ).

（An obstacle problem with obstacle u0）

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Main reulsts IV

.
Theorem 7 (gradient flow structure)
..

......

We suppose f ∈ L2(Ω). We define

E (u) :=
1

2

∫
Ω
|∇u|2 dx −

∫
Ω

fu dx .

Then [t 7→ E (u(·, t))] ∈ W 1,1(0,T ) and

d

dt
E (u(·, t)) = −

∫
Ω
|ut |2 dx ≤ 0 a.e. t ∈ (0,T )

holds.

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Known reults
General theory of doubly nonlinear evolution equation:

∂Ψ(ut(t)) + ∂Φ(u(t)) 3 f (t) in H

including (1) has been studied in [V. Barbu, ’75], [T. Arai, ’79], [T.
Senba, ’86], [U. Gianazza and G. Savaré, ’94]. The boundedness of
∂Ψ is usually assumed and (1) is excluded in most studies.
.
Theorem 8 (T. Arai, 1979)
..

......

If f ∈ W 1,1(0,T ; L2(Ω)), then there exists a strong solution u of
(1) and ut , ∆u ∈ L∞(0,T ; L2(Ω)) holds.

Remark: f ∈W 1,1(0,T ; L2(Ω))

=⇒ |f (x , t)| ≤ f ∗(x) := |f (0, x)| +
∫ T

0
|ft(x , t)| dt

[U. Gianazza and G. Savaré, ’94] also proved existence and
uniqueness of a weak solution to (1) for f = 0.

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Weak and strong solutions

1. [weak solution without uniqueness]
I H1-solution, (∆u + f ): Radon Measure (Gianazza-Savaré)
I characterization as a constrained gradent flow in energy form

(M. Negri)
I H1-limit of minimizing sequence

2. [not so strong solution] u ∈ H1(0,T ; H1(Ω)) (D. Knee et al)
I unique existense of the solution
I technical definition of the positive part (∆u + f )+
I not weaker than the strong solution

3. [strong solution]
u ∈ H1(0,T ; L2(Ω)) ∩ L2(0,T ; H2(Ω) ∩ H1

0 (Ω)) (Akagi-K.)

4. [viscosity solution]
I unique existense of the solution
I no energy gradient structure

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Sketch of proof I (gradient flow structure, uniqueness)
Since a strong solution u of (1) satisfies
u ∈ H1(0,T ; L2(Ω)) ∩ L2(0,T ; H2(Ω) ∩ H1

0 (Ω)), we can verify

d

dt
E (u(·, t)) = −

∫
Ω

(∆u + f (x))ut dx = −
∫

Ω

|ut |2 dx ≤ 0.

For strong solutions u1, u2, w := u1 − u2.

d

dt

∫
Ω

|∇w(x , t)|2 dx = −2

∫
Ω

wt(x , t)∆w(x , t) dx

= −2

∫
Ω

{(∆u1(x , t) + f (x , t))+ − (∆u2(x , t) + f (x , t))+}

· {(∆u1(x , t) + f (x , t)) − (∆u2(x , t) + f (x , t))} dx

≤ −2

∫
Ω

|(∆u1(x , t) + f (x , t))+ − (∆u2(x , t) + f (x , t))+|2 dx ≤ 0.

Since |a+ − b+| ≤ |a − b|,
|a+ − b+|2 ≤ |a+ − b+||a − b| = (a+ − b+)(a − b) (a, b ∈ R)

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Sketch of proof II (existence (1))

I Implicit time discretization (τ > 0 time increment)

uk(x) − uk−1(x)

τ
=

(
∆uk(x) + f k(x)

)
+

a.e. x ∈ Ω

I Piecewise linear interpolation uτ ∈ C 0([0,T ]; H1
0 (Ω)),

Piecewise constant interpolation ūτ ∈ L∞(0,T ; H1
0 (Ω))，

I {uτ}τ：bdd in H1(0,T ; L2(Ω)) ∩ L∞(0,T ;H1
0 (Ω)),

{ūτ}τ：bdd in L∞(0,T ; H1
0 (Ω)).

I Subsequences of {uτ}τ and {ūτ}τ converge to
∃u ∈ H1(0,T ; L2(Ω)) ∩ L∞(0,T ; H1

0 (Ω)).

uτ → u in C 0([0, T ]; L2(Ω)), uτ , ūτ → u weakly star in L∞(0, T ; H1
0 (Ω)),

uτ → u weakly in H1(0, T ; L2(Ω)), uτ , ūτ → u weakly in L2(0, T ; H1
0 (Ω)),

This H1 estimate is not sufficient for strong solution.
Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Sketch of proof II (existence (2))
.
Lemma 9
..

......

Fix k ∈ N. If f k ∈ L2(Ω), uk−1 ∈ H1
0 (Ω) ∩ H2(Ω), then there uniquely

exists uk ∈ H1
0 (Ω) ∩ H2(Ω) such that

uk(x) − uk−1(x)

τ
=

(
∆uk(x) + f k(x)

)
+

a.e. x ∈ Ω,

where this uk is given as a unique minimizer of

Jk(v) :=
1

2τ

∫
Ω

|v − uk−1|2 dx +
1

2

∫
Ω

|∇v |2 dx −
∫

Ω

fkv dx

uk := arg min
v∈K k

0

Jk(v), K k
0 := {v ∈ H1

0 (Ω); v ≥ uk−1}.

Furthermore, we have the following estimate:

−∆uk(x) ≤ max(−∆uk−1(x), f k(x)) a.e. x ∈ Ω

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Sketch of proof II (existence (3))

I For f ∗ ∈ L2(Ω) with f ∈ L2(Q), f (x , t) ≤ f ∗(x) a.e.

(x , t) ∈ Q, we define f k :=
1

τ

∫ kτ

(k−1)τ
f (x , t)dt. Then

−∆uk ≤ max(−∆u0, f 1, · · · , f k)

≤ max(−∆u0, f ∗) a.e. in Ω (k = 1, · · · , [T/τ ])

I {∆uτ}τ : bdd in L2(Q)

I ∆uτ → ∆u weakly in L2(Q)

I u becomes a strong solution of (1).

I To prove Lemma 9, we need to improve the regularity
estimate for variational inequality.

A strong solution is obtained by this H2 estimate.

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Regularity estimate for variational inequality I

For V := H1
0 (Ω), σ ≥ 0, we define a(u, v) and A ∈ B(V ,V ′) as

a(u, v) := 〈Au, v〉 =

∫
Ω

(∇u · ∇v + σuv) dx (u, v ∈ V ).

For f ∈ V ′ and ψ ∈ V , we define f̂ := Aψ ∈ V ′.

K0 := {v ∈ V ; v ≥ ψ a.e. in Ω}, K1 := {v ∈ V ; Av ≥ f in V ′}.

J(v) :=
1

2
a(v , v) − 〈f , v〉, Ĵ(v) :=

1

2
a(v , v) − 〈f̂ , v〉 (v ∈ V ).

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Regularity estimate for variational inequality II
.
Theorem 10
..

......

Problems (a)-(e) are equiv. to each others, and they have a unique sol.

(a) u ∈ K0, J(u) ≤ J(v) for all v ∈ K0

(b) u ∈ K0, a(u, v − u) ≥ 〈f , v − u〉 for all v ∈ K0

(c) u ∈ K0 ∩ K1, 〈Au − f , u − ψ〉 = 0

(d) u ∈ K1, a(u, v − u) ≥ 〈f̂ , v − u〉 for all v ∈ K1

(e) u ∈ K1, Ĵ(u) ≤ Ĵ(v) for all v ∈ K1

Furthermore, if f , f̂ = Aψ ∈ Lp(Ω) 1 < p <∞, p ≥ 2n/(n + 2), then
(a)-(e) are also equiv. to (f)-(h). K2 := {v ∈ V ; f ≤ Av ≤ max(f , f̂ )}.

(f) u ∈ K2, Ĵ(u) ≤ Ĵ(v) for all v ∈ K2

(g) u ∈ K2, a(u, v − u) ≥ 〈f̂ , v − u〉 for all v ∈ K2

(h) u ∈ K0 ∩ K1 ∩ W 2,p(Ω), (Au − f )(u − ψ) = 0 a.e. in Ω

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Regularity estimate for variational inequality III

I B.Gustafsson (1986): equivalence of (a)(b) and (f)(g)

I Estimates ∆u ∈ Lp(Ω), u ∈ W 2,p(Ω) follow from
u ∈ K2 := {v ∈ V ; f ≤ Av ≤ max(f , f̂ ) in V ′}.

I In the standard textbooks: D.Kinderlehrer-G.Stampacchia (1980) or
A.Friedman (1982), the regularity estimate is shown by a penalty
method.

I Gustafsson, Kinderlehrer-Stampacchia, Friedman assumed that
W 2,p(Ω) ⊂ C 0(Ω) (i.e. p > n/2) in order to use a maximum
principle of subharmonic functions.

I We have improved the condition as 1 < p <∞, p ≥ 2n/(n + 2),
which enables us to choose p = 2 for any n ∈ N.

I The condition of (u ∈ K2) for uk gives

−uk − uk−1

τ
+ f k ≤ −∆uk ≤ max(−∆uk−1, f k) a.e. in Ω.

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Sketch of proof III(comparison principle, asymptotic behaviour)

Comparison principle

I uniqueness + comparison principle for VI
=⇒ comparison principle for (1)

Asymptotic behavior
∃u∞ ∈ H1

0 (Ω) ∩ H2(Ω) s.t. lim
t→∞

‖u(t, ·) − u∞‖H1(Ω) = 0

uk ≤ ū (k ∈ N) follows from CP of sol. uk of VI, and u∞ ≤ ū
follows.

ū ≤ u∞ follows from CP of sol. ū ∈ H1
0 (Ω) ∩ H2(Ω) of VI,

too.

u∞ = ū

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model



. . . . . .

Introduction
Phase field model for crack propagation

Irreversible diffusion equation

Classical one phase Stefan problem
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Stefan problem (melting ice in water)

Ω = ΩI (t) ∪ Γ(t) ∪ ΩW (t) ⊂ Rn

q(x , t) ≥ 0: temparature
q = 0 on ice
V (x , t): normal velocity of Γ(t)
qt = ∆q in ΩW (t)
q = 0 on ΩI (t) ∪ Γ(t)
q = h(x , t) ≥ 0 on ∂Ω
q(x , 0) = q0(x) in Ω
αV = −∂νq on Γ(t)

ΩI (t): ice
ν V

qt = Δq

q = 0

q = h ≥ 0

ΩW (t): water

Ω

Γ(t)

Stefan condition
αV = −∂νq

Figure: melting ice ΩI (t)
surrounded by water region
ΩW (t)
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Stefan problem ⇒ irreversible diffusion equation

Stefan problem
qt = ∆q in ΩW (t)
q = 0 on ΩI (t) ∪ Γ(t)
q = h(x , t) ≥ 0 on ∂Ω
q(x , 0) = q0(x) in Ω
αV = −∂νq on Γ(t)

Baiocchi transformation

u(x , t) :=

∫ t

0
q(x , s)ds,

g(x , t) :=

∫ t

0
h(x , s)ds,

f (x) := q0(x) − αχΩI (0)(x)

⇒


ut =
(
∆u + f

)
+

u = g on ∂Ω
u(·, 0) = 0 in Ω

Irreversible diffusion eq.!

This gives a new formulation
of the Stefan problem.

ΩI (t) = {x ∈ Ω; ut(x , t) = 0}.

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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Conclusion and future problems

The regularity estimate of the obstacle problem was improved.

For the irreversible diffusion equation: ut =
(
∆u + f (x , t)

)
+
,

unique existence of a strong solution, gradient flow structure,
comparison principle, and asymptotic behavior were shown.

The results can be extended to the case of mixed boundary
condition: u = 0 on ΓD，∂νu = 0 on ΓN , provided the H2-regularity
of the elliptic boundary value problem holds.

Assumption on f：f ∈ W 1,1(0,T ; L2(Ω)) was improved as
f ∈ L2(Q), f (x , t) ≤ f ∗(x), f ∗ ∈ L2(Ω).

Well-posedness of the crack propagation model

Abstract theory of the doubly nonlinear evolution equation including
our irreverisble diffusion equation

New approach to the Stefan problem

Masato Kimura Unidirectional gradient flow and its application to a crack propagation model
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