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Introduction

Irreversible diffusion system and crack propagation model

» lIrreversible diffusion equation (Unidirectional evolution)

ut:(Au—i—f(x,t))Jr xeQCR" t>0

> Irreversibility u > 0 (a)s+ := max(a,0))

d
» Gradient flow structure EE(U(', t)) = —/ lug>dx <0
Q

E(u) ::%/Q|Vu|2dx—/ﬂfudx

(if u|aQ = 0, f = f(X))
» A crack propagation model [Takaishi-Kimura 2009]
» A phase field variable (damage variable) z(x, t) € [0, 1] for
crack position: z = 0: no crack, z &~ 1: crack
» Derived as a gradient flow of [elastic energy + surface energy].

» Non-repairability of crack is expressed as
2 = (Az + g(z,|Vul)).
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Phase field model for crack propagation

Crack propagation model
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Phase field model for crack propagation

mode Il crack propagation model [Takaishi-Kimura 2009]
Q : R?%: bdd domain 9Q =T =T'p Ul y: smooth
u(x, t) € R: antiplane displacement, z(x,t) € [0,1]: damage
variable
v(x) > 0: fracture toughness g(x, t): a, € >0,

div ((1 - z)?Vu) =0 (x€Q, t>0)
oz = (e div (y(x)Vz) — 7(:)z + |Vu)?(1 - z)>+ (xe€Q, t>0)
u=g(x,t) (xelp, t>0)
%:0 (xely, t>0)
% = (xerl, t>0)
z(x,0) = zo(x) € [0, 1] (x € Q)
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Phase field model for crack propagation

Elasticity eq.(anti-plane displ.) in a cracked domain

—uAu=f inQ\X &

u=g on I N r
Q\Z

g _ onl &2,

on B iy

@ Approximation by z

—udiv(1=2*Vu)=f inQ - —
u=g onT, k o
ou

—= onI

on N L,
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Phase field model for crack propagation

Irreversibility (Non-repairability) and gradient flow

» Non-repairability of crack is expressed by zz = (- ).

» Ambrosio-Tortorelli approximation of Griffith-Francfort-Marigo
energy:

E(z) := min (1/(1—2)2|Vu|2 dx>+1/7(x) (6|Vz|2+122) dx
u\rD:g 2 Q 2 Q €

» Gradient flow stracture (if gr = 0)

9 (2 1)) = _/Q {ediv (v(x)vz) - 1), |Vu2(l—z)}zt dx

:—a/ |z:|2dx <0
Q

€

dt
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Phase field model for crack propagation

Numerical examples

Method and parameters

* Numerical method
— Implicit scheme

— ALBERTA : Adaptive
mesh FEM

* Parameters

£=10" =

a= 1073 X
y=7=05u=1

f(x,t)=0,g(x,¢) =10tx,

O0<t<3

Masato Kimura
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Phase field model for crack propagation

A straight crack

Figure: u and |Vu| (top), u (middle), z (bottom)
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Phase field model for crack propagation

Merging two cracks
t=0

t =20

~ >
B

Figure: u and |Vu| (top), u (middle), z (bottom)

~
Jp—
[ —
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Phase field model for crack propagation

Two straight cracks
t=0

Figure: u and |Vu| (top), u (middle), z (bottom)
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Phase field model for crack propagation

Subcrack beyween two straight cracks
t=0 t=5

Figure: u and |Vu| (top), u (middle), z (bottom)
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Phase field model for crack propagation

Checker pattern fracture toughness v(x) = 0.5(1 + 0.2 cos 10x cos 10y)
t=0 t=5 t=10 t=20

Figure: u and |Vu| (top), u (middle), z (bottom)
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Phase field model for crack propagation

Stripe pattern fracture toughness v(x) = 0.5(1 + 0.2 cos 10(x + y))
t=0 t=5 t=10 t=20

~

Figure: u and |Vu| (top), u (middle), z (bottom)

al

_ | B
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Phase field model for crack propagation

crack propagation model in 3D
Q : R3: bdd domain, 9Q =T =p U y: smooth
u(x,t) € R3: displacement, e[u] € R3*3: strain tensor,
o[u] = Ce[u] € R3*3: stress tensor,
z(x, t) € [0,1]: damage variable,
v(x) > 0: fracture toughness, g(x, t), «, € > 0: given

div ((1 — z)2o[u]) =0 (xeQ, t>0)
azy = (e div (v(x)Vz) — /Y(:)z +olu] : e[u](1 — z)) (xeQ, t>0)
u=g(x,t) ’ (xeTlp, t>0)
oluln=0 (x ey, t>0)
% =0 (xerl, t>0)

L z(x,0) = z(x) € [0,1] (x€Q)
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Phase field model for crack propagation

3D numerical simulation

div ((1 - z)o[u]) =0

azy = (e div (y(x)Vz) — 7(:)2 +ofu] @ e[u](1 - z))

Figure: an example of 3D simulation, time increases from left to right
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Irreversible diffusion equation

Irreversible diffusion equation
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Irreversible diffusion equation

Irreversible diffusion equation and strong solution
Q C R bdd domain, ' = 9€2: smooth

(Au+f(x,t)), (x,t)eQ:=Qx(0,T),
(x,t)=0 x,t) el x(0,T), (1)
(x,0) = up(x) x €.

Definition 1 (strong solution)
Let f € L?(Q), up € L?(Q). v is called a strong solution of (1) iff
(a) ue HY(0, T; L*(Q)) N L2(0, T; H*(Q) N Hy(Q))

(b) ue = (Au+ f) H"lae. in Q
(c) u(0,) = up € L3(Q)

Remark) Definition of the weak solution (H* sol.) has problems.
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Irreversible diffusion equation

Main results |

Theorem 2 (complementarity form)

u is a strong solution of (1) iff

(c1) ue HYO, T; L3(Q)) N L2(0, T; H*(Q) N H3(R)),
(c2) Oru >0 a.e in Q,

(c3) Oru—Au—f >0ae inQ,

(cd) (Oru— Au—F)Oru=0 a.e. in Q,

(¢5) u(0,-) = wo.

cH

Theorem 3 (uniqueness)

A strong solution of (1) is unique, if it exists.
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Irreversible diffusion equation

Main results |l

Theorem 4 (existence)

We suppose uy € H*(Q) N H3(Q) and f € L2(Q). If there exists
f* € L2(Q) with f(x,t) < f*(x) a.e. in @, then there is a strong
solution of (1).

Theorem 5 (comparison principle)

Let u' (i = 1,2) be a strong solution of (1) with

up = uh € HA(Q) N HY(Q), f=f" € L?(Q), respectively. We
suppose that there exists f* € L2(Q) with f(x, t) < f*(x)

a.e inQ (i=1,2). lfué < u(% ae inQand f1<f?ae inQ,
then u! < u? a.e. in Q holds.
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Irreversible diffusion equation

Main results I

Theorem 6 (asymptotic behavior)
If f € L2(2), then there exists T € H*(Q) N H() such that

Jim Jlu8) = @llpa) = 0,

where U is given as a unique solution of the following variational
inequality:

0€K:={veH}Q); v>u ae inQ},

/VU-V(V—D)dXZ(f,V—D} ("v € K).
Q

(An obstacle problem with obstacle ug)
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Irreversible diffusion equation

Main reulsts IV

Theorem 7 (gradient flow structure)

We suppose f € L2(Q). We define

E(u) ::;/Q]Vu2dx—/ﬂfudx.

Then [t — E(u(-,t))] € WH1(0, T) and

J
9 Eu(-, 1)) = —/ udx <0 ae te(0,T)
dt 0

holds.

Masato Kimura
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Irreversible diffusion equation

Known reults
General theory of doubly nonlinear evolution equation:
OV (u(t)) + 0d(u(t)) > f(t) in H
including (1) has been studied in [V. Barbu, '75], [T. Arai, '79], [T.
Senba, '86], [U. Gianazza and G. Savaré, '94]. The boundedness of
OV is usually assumed and (1) is excluded in most studies.

Theorem 8 (T. Arai, 1979)

If f € WH1(0, T; L?(Q)), then there exists a strong solution u of
(1) and us, Au € L>=(0, T; L%(Q)) holds.

Remark: f e WH1(0, T; L#(Q))
.
— |f(x,t)| < F*(x) = f(o,x)\+/ |fi(x, t)| dt
J0

[U. Gianazza and G. Savaré, '94] also proved existence and
uniqueness of a weak solution to (1) for f = 0.

Masato Kimura Unidirectional gradient flow and its application to a crack propag



Irreversible diffusion equation

Weak and strong solutions

1. [weak solution without uniqueness]
» Hl-solution, (Au+ f): Radon Measure (Gianazza-Savaré)
» characterization as a constrained gradent flow in energy form
(M. Negri)
» H-limit of minimizing sequence
2. [not so strong solution] u € H*(0, T; H1(R)) (D. Knee et al)
> unique existense of the solution
» technical definition of the positive part (Au+ )4
» not weaker than the strong solution

3. [strong solution]
ue HY0, T; L3(Q)) N L2(0, T; H*(Q) N HA(Q)) (Akagi-K.)
4. [viscosity solution]

> unique existense of the solution
> no energy gradient structure
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Irreversible diffusion equation

Sketch of proof | (gradient flow structure, uniqueness)

Since a strong solution u of (1) satisfies
u € HY0, T; L2(Q)) N L2(0, T; H?(2) N H3(Q)), we can verify

iE(u(., t)) = f./S;(Au + f(x))uz dx = —'/;2 lug|> dx < 0.

For strong solutions uy, wup, w := uy — us.

jt/ IVw(x, t)]? dx = —2/ we(x, t) Aw(x, t) dx

- /Q ((Bus(x, ) + F(, 8) s — (Bua(x,£) + F(x, 8))4}
A(Aur(x, t) + f(x,t)) — (Aua(x, t) + f(x, t))} dx

< 72/9 (Au(x, 1) + F(x, )5 — (Aua(x, t) + F(x, 1)1 |* dx < 0.

Since |ay — by < |a— b,
jay — by < lay —bylla— b= (a: — by)(a—b)  (abER)

Masato Kimura
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Irreversible diffusion equation

Sketch of proof Il (existence (1))

» Implicit time discretization (7 > 0 time increment)

uk(x) — 1 (x)

T = (AU () + 4 (x)), ae x€Q

> Piecewise linear interpolation u, € C°([0, T]; H3(Q)),
Piecewise constant interpolation &, € L°°(0, T; H}(f2)),

» {u;}, ¢ bdd in HL(0, T; L2(Q)) N L>(0, T; HX(R)),
{i.}- 1 bdd in L>(0, T; HE(Q)).

» Subsequences of {u,}, and {4}, converge to
Fu e HY(0, T; L2(Q)) N L>=(0, T; H(Q)).

ur — u in C°([0, T]; L*()), ur, Oy — u weakly star in L(0, T; Hy (),
ur — u weakly in H'(0, T; L3(Q)), ur, Oy — u weakly in L*(0, T; Hy()),

This H! estimate is not sufficient for strong solution.
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Irreversible diffusion equation

Sketch of proof Il (existence (2))
Lemma 9

Fix k € N If fk e 12(Q), uk=1 € H}(Q) N H?(Q), then there uniquely
exists uk € HY(Q) N H2(Q) such that

uk(x) — u(x)

- = (Auk(x) + fk(x)) ae. x€Q,

+

where this u* is given as a unique minimizer of

1 1
:—/|v—uk,1\2dx+f/\Vv|2dx—/fkvdx
27 Jo 2 Ja Q
K

u* := arg min Jx(v), Ké( ={veH;Q), v> uk_l}.
vEKé‘

Furthermore, we have the following estimate:

—Au*(x) < max(—Au*(x), A (x)) a.e. x€Q
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Irreversible diffusion equation

Sketch of proof Il (existence (3))

» For f* € L?(Q) with f € L%(Q), f(x,t) < f*(x) a.e.
kT
(x,t) € Q, we define K := 1/ f(x, t)dt. Then
T J(k=1)7
—Auk < max(—Aug, L, k)
< max(—Aug, *) ae. inQ (k=1,---,[T/7])

» {Au,},: bdd in L2(Q)

» Au, — Au  weakly in [%(Q)

» u becomes a strong solution of (1).

» To prove Lemma 9, we need to improve the regularity

estimate for variational inequality.

A strong solution is obtained by this H? estimate.
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Irreversible diffusion equation

Regularity estimate for variational inequality |

For V := H}(Q), o > 0, we define a(u,v) and A € B(V, V') as

a(u,v) ;== (Au, v) = /Q(Vu -Vv+ouw)dx (u,veV).

For f € V/ and ¢ € V, we define Fo= Ay e V',

Ko:={veV,v>dae inQ}, K :={veV;, Av>finV'}

J(v) = %a(v, v) = (f,v), J(v):= %a(v, v)—(f,v) (veV).
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Irreversible diffusion equation

Regularity estimate for variational inequality Il

Theorem 10

Problems (a)-(e) are equiv. to each others, and they have a unique sol.
(a) u€ Ko, J(u) < J(v) forall v € Ky

(b) ue Ko, a(u,v—u) > {(f,v—u) forall ve Ky

(c) ue KoNKy, (Au—Ff,u—19)=0

(d) ve Ky, a(u,v—u) > (F,v—u) forall ve Ky

(e) ue Ky, J(u) < J(v) forall v e K

Furthermore, if f, f = Aip € LP(Q) 1 < p < o0, p > 2n/(n+2), then
(a)-(e) are also equiv. to (f)-(h). Ky :={v e V; f <Av <max(f, f)}.
(f) ue Ky, J(u) < I(v) forall v e Ky

(g) ue Ky, a(u,v—u)>{f,v—u) forallve kK,
(h) ue KoNKiNW?2P(Q), (Au—f)(u—1)=0ae inQ

Masato Kimura
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Irreversible diffusion equation

Regularity estimate for variational inequality Il

v

B.Gustafsson (1986): equivalence of (a)(b) and (f)(g)

> Estimates Au € LP(Q), u € W?P(Q) follow from

ue Ky :={veV, f<Av<max(f, f)in V'}.

In the standard textbooks: D.Kinderlehrer-G.Stampacchia (1980) or
A.Friedman (1982), the regularity estimate is shown by a penalty
method.

Gustafsson, Kinierlehrer—Stampacchia, Friedman assumed that
W2P(Q) C C°(Q) (i.e. p> n/2) in order to use a maximum
principle of subharmonic functions.

We have improved the condition as 1 < p < oo, p > 2n/(n+ 2),
which enables us to choose p = 2 for any n € N.
The condition of (u € K,) for u* gives

uk — k1

4+ P < AU < max(—AU*E, Y ae in Q.
-
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Irreversible diffusion equation

Sketch of proof |||(comparison principle, asymptotic behaviour)

Comparison principle
» uniqueness + comparison principle for VI
= comparison principle for (1)
Asymptotic behavior
0 Juy € HY(Q) N H?(Q) sit. tlim |u(t, ") = tsollpr(@) = 0
—00
e ux < i (k € N) follows from CP of sol. ug of VI, and us, < T
follows.

® 1 < uy follows from CP of sol. & € H}(Q) N H?(RQ) of VI,
too.

@ U =1
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Irreversible diffusion equation

Classical one phase Stefan problem
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Irreversible diffusion equation

Stefan problem (melting ice in water)
Q=Q(t)Ul(t) UQuw(t) CR"
q(x,t) > 0: temparature
g =0on ice
V(x, t): normal velocity of '(t)

Q,, (¢): water

Stefan condition

g = Aq in Qu(t)
g=0 on Q(t) UT(t)
qg=h(x,t) >0 on 9Q

q(x,0) = go(x) inQ

aV =-0,q on '(t) G=h=0

Figure: melting ice Q(t)
surrounded by water region
Qw(t)

Unidirectional gradient flow and its application to a crack propag

Masato Kimura



Irreversible diffusion equation

Stefan problem =- irreversible diffusion equation

Stefan problem

g = Aq in Qu(t)

g=0 on Q(t) UT(t)

qg=h(x,t) >0 on 9Q ue = (Bu+ f)
9(x,0) = go(x) in 2 é u=g on 8Q+
aV =-0,q on '(t) u(-,Og):0 0

Baiocchi transformation . coe
Irreversible diffusion eq.!

t
u(x, t) 3:/ q(x, s)ds, This gives a new formulation
0

g(x,t) = /0 h(x, s)ds,
f(x) = qo(x) — OéXQI(O)(X)

of the Stefan problem.

Q(t) = {x € Q; ue(x,t)=0}.
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Irreversible diffusion equation

Conclusion and future problems

@ The regularity estimate of the obstacle problem was improved.

@ For the irreversible diffusion equation: uy = (Au+ f(x, t))+'
unique existence of a strong solution, gradient flow structure,
comparison principle, and asymptotic behavior were shown.

@ The results can be extended to the case of mixed boundary
condition: u=0on Ip, O,u =0 on Iy, provided the H?-regularity
of the elliptic boundary value problem holds.

@ Assumption on f : f € WL1(0, T; L2(Q)) was improved as
fe2(Q), f(x,t) < F(x), F* € L2(Q).

m Well-posedness of the crack propagation model

m Abstract theory of the doubly nonlinear evolution equation including
our irreverisble diffusion equation

m New approach to the Stefan problem
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