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Overview

@ Introduction: elasticity & fracture

© Thin brittle beams

© Quantitative piecewise geometric rigidity

e Dimension reduction
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Overview

@ Introduction: elasticity & fracture
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Introduction
Nonlinear elasticity theory

Elastostatics: Understand stable deformations of a block Q of elastic
material, subject to boundary conditions and applied loads.

v <> QCRY, d=2,3: refconfig.
Q m v : Q — RY: deformation.
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Introduction
Nonlinear elasticity theory

Elastostatics: Understand stable deformations of a block Q of elastic
material, subject to boundary conditions and applied loads.

v <> QCRY, d=2,3: refconfig.
Q m v : Q — RY: deformation.

Hyper-elastic energy functional for a bulk material on W12(Q; R9):

Eelast(V) = /Q W(VV(X)) dx,

with stored energy function W : R4 R
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Introduction
Nonlinear elasticity theory

Elastostatics: Understand stable deformations of a block Q of elastic
material, subject to boundary conditions and applied loads.

v <> QCRY, d=2,3: refconfig.
Q m v : Q — RY: deformation.

Hyper-elastic energy functional for a bulk material on W12(Q; R9):

Eelast(V) = /Q W(VV(X)) dx,

with stored energy function W : RY*¢ — R which is
@ frame indifferent, > 0 with W(F) =0 < F € SO(d),
@ sufficiently regular,

@ non-degenerate: W(F) > cdist?(F, SO(n)).
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Introduction

Classical beam theory

Interesting in many applications: thin objects such as membranes,
plates, shells, rods and beams.

New phenomena: Large deformations at low energy (crumpling,
bending).
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Introduction
Classical beam theory

Interesting in many applications: thin objects such as membranes,
plates, shells, rods and beams.

New phenomena: Large deformations at low energy (crumpling,
bending).

The basic example: A planar beam.

Q v v(Q) Q=(0,L)x (2,8, n< L,
— C———1 v: Q>R

Euler-Bernoulli theory: Energy functional for bending dominated
configurations in terms of the mid-line deformation.

ok [t K: curvature of t — v(t,0),

Egp(v) = o, |k(t)|? dt, « the Euler-Bernoulli constant.
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Introduction
Classical beam theory

Interesting in many applications: thin objects such as membranes,
plates, shells, rods and beams.

New phenomena: Large deformations at low energy (crumpling,
bending).

The basic example: A planar beam.

Q v v(Q) Q=(0,L)x (2,8, n< L,

[E— ——2 v:0-R.

Euler-Bernoulli theory: Energy functional for bending dominated
configurations in terms of the mid-line deformation.
ok K: curvature of t — v(t,0),
Egp(v) = / [k (1) |2 dt, « the Euler-Bernoulli constant.

Note: « is the ‘Poisson effect relaxed’ elastic modulus
(cf. Friesecke/James/Miiller '02).
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Introduction

Energy scaling

Classical problem in elasticity theory: Derive effective energy
functionals in the limit of singular geometries.
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Introduction

Energy scaling

Classical problem in elasticity theory: Derive effective energy
functionals in the limit of singular geometries.

@ E/' _ ~ h: nonlinear finite strains

For a beam with elast .
(finite energy per unit volume)
E:last(v) = W(Vv), ° E:last ~ h3: small strain, finite bending

Qy
° Eé’last < h3: small deflection
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Introduction

Energy scaling

Classical problem in elasticity theory: Derive effective energy
functionals in the limit of singular geometries.

@ E/' _ ~ h: nonlinear finite strains

For a beam with elast .
(finite energy per unit volume)
E:last(v) = W(Vv), ° Eef’last ~ h3: small strain, finite bending

Q
’ e EN . < h3 small deflection
For rigorous I'-convergence results (even 3D — 2D), see
@ LeDret/Raoult '93: membranes

@ Friesecke/James/Miiller '02 & '06: hierarchy of plate theories
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Introduction
Variational fracture mechanics

Fracture:

Q v(Q)
deformation v € SBV(Q; RY).
v - jumps on codim 1 surface J,,
é - Dv = VvL? outside J,.
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Introduction
Variational fracture mechanics

Fracture:

Q v(Q)
deformation v € SBV(Q; RY).
‘ v - jumps on codim 1 surface J,,
/\ é - Dv = VvL? outside J,.
|

Griffith-type energy functional (cf. Francfort/Marigo):

Ecrigr(v) = W(Vv)+ BHI(J,), W: stored energy function,
Q\Jy B: crack energy / surface area

elastic energy crack energy
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Brittle beams

Overview

© Thin brittle beams
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Brittle beams
The model and the main goal

Goal: Find effective theory for thin brittle beams for bending dominated
configurations: a Griffith-Euler-Bernoulli theory.

Qy=(0,L)x (=28, h< L,
Ere)= [ WE@rane ), PO D (7502)
. v € SBV/(Qp; R2).
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Brittle beams
The model and the main goal

Goal: Find effective theory for thin brittle beams for bending dominated
configurations: a Griffith-Euler-Bernoulli theory.

B Q,=(0,L)x (=20 h<iL,
E(h}riﬂ”(v) = 2\ W(VV)—Fﬂh’Hd l(Jv)a v E SBV(Q;,;R2)2. 2
h\Jv

Energy scaling:
@ Purely elastic (no cracks): fQ\J W(Vv) ~ h3.

@ Breaking vertically into several pieces: ~ [3,h.
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Brittle beams
The model and the main goal

Goal: Find effective theory for thin brittle beams for bending dominated
configurations: a Griffith-Euler-Bernoulli theory.

Qy=(0,L) x (—5,%), h< L,

Eban() = [ WVO+BHTU) e spuanRo)

Qn\Jy
Energy scaling:
@ Purely elastic (no cracks): fQ\J W(Vv) ~ h3.

@ Breaking vertically into several pieces: ~ [3,h.

Consequence: To model materials which
@ respond elastically to small (e.g. infinitesimal) deflection,
@ may fracture at large (finite) bending,

we assume that 3, = h?f3.

Goal: Determine the I'-limit of h_*?‘E(”;riff as h — 0.
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Brittle beams
Main result

More precise setup:
Rescale to common domain Q = Q; via y(x1, x2) = v(x1, hxa)
and for a large fixed M > 1 let

I"(y)=h=3 [ W(Vv)dx+h18H(J,)
Qp

if v e SBV(;R?), max{||v| 1, ||Vv|i=} < M. (Extend to all of
SBV(Q; R?) by +c0.)
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Brittle beams
Main result

More precise setup:
Rescale to common domain Q = Q; via y(x1, x2) = v(x1, hxa)
and for a large fixed M > 1 let

I"(y)=h=3 [ W(Vv)dx+h18H(J,)
Qp
if v € SBV(Q;R?), max{||v| 1, ||VV||=} < M. (Extend to all of
SBV(Q; R?) by +c0.)

Remark. M models a large box containing v(£24) and also forbids
(unphysically) large strains.
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Brittle beams
Main result

More precise setup:
Rescale to common domain Q = Q; via y(x1, x2) = v(x1, hxa)
and for a large fixed M > 1 let

I"(y)=h=3 [ W(Vv)dx+h18H(J,)
Qp

if v e SBV(;R?), max{||v| 1, ||Vv|i=} < M. (Extend to all of
SBV(Q; R?) by +c0.)

Remark. M models a large box containing v(£24) and also forbids
(unphysically) large strains.

If y(x) = y(x1) for a.e. x € Q we also set

L
P) = 55 | INOF de+ 505U ).

if y € PW-W?22((0,L); R?), |[y| < Mand |[y/|=1ae,n=y" (V)"
(Extend to all of SBV(; R?) by +00.)
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Brittle beams
Main result

Theorem. (Gamma-convergence) [S. '16]
The 1" T-converge to 1% on SBV(Q; R?) (w.r.t. LY) as h— 0, i.e.,

(i) liminf inequality: (ii) recovery sequences:
whenever y" — y in L1, Vy Iy with y" — yin ! s.t.
liminf 17(y") > 1%(y); lim Ih(yh) = 1°(y).

h—0 h—0
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Brittle beams
Main result

Theorem. (Gamma-convergence) [S. '16]
The 1" T-converge to 1% on SBV(Q; R?) (w.r.t. LY) as h— 0, i.e.,

(i) liminf inequality: (ii) recovery sequences:
whenever y" — y in L1, Vy Iy with y" — yin ! s.t.
liminf 17(y") > 1%(y); lim Ih(yh) = 1°(y).

h—0 h—0

Theorem. (Compactness) [S. '16] If /"(y") < C (C independent of h),
then for a subsequence (not relabeled) y" — y in L! for some y.
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Brittle beams
Main result

Theorem. (Gamma-convergence) [S. '16]
The 1" T-converge to 1% on SBV(Q; R?) (w.r.t. LY) as h— 0, i.e.,

(i) liminf inequality: (ii) recovery sequences:
whenever y" — y in L1, Vy Iy with y" — yin ! s.t.
liminf 17(y") > 1%(y); lim Ih(yh) = 1°(y).

h—0 h—0

Theorem. (Compactness) [S. '16] If /"(y") < C (C independent of h),
then for a subsequence (not relabeled) y" — y in L! for some y.
Remarks.

o Infact, y" =y, O1y" — v/, =10,y — y'* in LP strongly for all
p < 0o and DSy X D3y weakly* as Radon measures.

@ Body forces and clamped boundary conditions can be included.

@ Entails a convergence theorem for (almost) minimizers (subject to
suitable body forces and boundary conditions).
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Brittle beams

Different energy scalings

Note: Other choices for the scaling behavior of 3 are possible, e.g.:

@ By~ 1: Egug ~ h* = limiting energy purely elastic.
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Brittle beams

Different energy scalings

Note: Other choices for the scaling behavior of 3 are possible, e.g.:

@ By~ 1: Egug ~ h* = limiting energy purely elastic.

@ B < h?: Equg ~ h* = limiting energy trivial (cracks for free).
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Brittle beams
Different energy scalings

Note: Other choices for the scaling behavior of 3 are possible, e.g.:
@ By~ 1: Egug ~ h* = limiting energy purely elastic.
Should instead look at Eq,ig ~ h:

nonlinear finite strain deformation ~ vertical crack

= Griffith type membrane theory
(cf. Braides/Fonseca '01 and Babadjian '06 even 3D — 2D).

Applies to ‘not too brittle’ materials.
— crumpling favored over fracture

@ B < h?: Equg ~ h* = limiting energy trivial (cracks for free).
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Brittle beams
Different energy scalings

Note: Other choices for the scaling behavior of 3 are possible, e.g.:
@ By~ 1: Egug ~ h* = limiting energy purely elastic.
Should instead look at Eq,ig ~ h:

nonlinear finite strain deformation ~ vertical crack

= Griffith type membrane theory
(cf. Braides/Fonseca '01 and Babadjian '06 even 3D — 2D).

Applies to ‘not too brittle’ materials.
— crumpling favored over fracture

@ B < h?: Equg ~ h* = limiting energy trivial (cracks for free).
Should instead look at Eqyigr ~ hfp:
infinitesimal deflection ~ vertical crack

= Griffith type small deflection beam theory
(in analogy to the results presented).

Applies to ‘very brittle’" materials.
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Rigidity

Overview

© Quantitative piecewise geometric rigidity
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Rigidity

Geometric rigidity: known results

Basic ingredient in the derivation of effective theories for elastic plates
(cf. Friesecke/James/Miiller '02 & '06): a quantitative geometric rigidity
estimate.

Theorem. [Friesecke/James/Miiller '02] Let Q C R? a (connected)
Lipschitz domain. For all y € W2(Q,R9) there is R € SO(d) s.t.

IVy = Rllj2(q) < C(Q) [|dist(Vy, SO(d)) || 12(q) -
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Rigidity

Geometric rigidity: known results

Basic ingredient in the derivation of effective theories for elastic plates
(cf. Friesecke/James/Miiller '02 & '06): a quantitative geometric rigidity
estimate.

Theorem. [Friesecke/James/Miiller '02] Let Q C R? a (connected)
Lipschitz domain. For all y € W2(Q,R9) there is R € SO(d) s.t.

IVy = Rllj2(q) < C(Q) [|dist(Vy, SO(d)) || 12(q) -

Problem: Cannot be true on SBV.
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Rigidity

Geometric rigidity: known results

Basic ingredient in the derivation of effective theories for elastic plates
(cf. Friesecke/James/Miiller '02 & '06): a quantitative geometric rigidity
estimate.

Theorem. [Friesecke/James/Miiller '02] Let Q C R? a (connected)
Lipschitz domain. For all y € W2(Q,R9) there is R € SO(d) s.t.

IVy = Rllj2(q) < C(Q) [|dist(Vy, SO(d)) || 12(q) -

Problem: Cannot be true on SBV.

But there is a qualitative version:

Theorem. [Chambolle/Giacomini/Ponsiglione '07] Suppose
y € SBV(S;R?), H1(J,) < 0o and Vy € SO(d) a.e. Then there exists a
(Caccioppoli) partition (P;) and R; € SO(d), ¢; € RY such that

y(x) = Z(Rix + ci)xp,(x).

l.e.: y is a collection of an at most countable family of rigid deformations
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Rigidity

Quantitative SBV rigidity: difficulties

Problem: We need a quantitative versionl = serious difficulties, e.g.:

@ Thin ‘tunnels’ connecting large regions close to different rotations.
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Rigidity

Quantitative SBV rigidity: difficulties

Problem: We need a quantitative versionl = serious difficulties, e.g.:
@ Thin ‘tunnels’ connecting large regions close to different rotations.

@ Highly irregular crack geometry — no uniform rigidity estimates
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Rigidity

Quantitative SBV rigidity: difficulties

Problem: We need a quantitative versionl = serious difficulties, e.g.:
@ Thin ‘tunnels’ connecting large regions close to different rotations.
@ Highly irregular crack geometry — no uniform rigidity estimates
@ Infinite crack patterns accumulating on different scales.

large crack

very small crack

very very small crack

small crack
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Rigidity

Quantitative SBV rigidity: difficulties

Problem: We need a quantitative versionl = serious difficulties, e.g.:
@ Thin ‘tunnels’ connecting large regions close to different rotations.
@ Highly irregular crack geometry — no uniform rigidity estimates

@ Infinite crack patterns accumulating on different scales.

large crack

very small crack

very very small crack

small crack

@ Could even have a dense crack set.
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Rigidity

Quantitative piecewise geometric rigidity . .. morally

Theorem (cheating version). [Friedrich/S. '15]
Let Q C R? a LipschAitz d9main, M>0and 0 <n<1.
3C=C(Q,M,n), C=C(Q,M,n,...)such that ¥ ¢ > 0:

Suppose y € SBV(; R?) with |y|,|Vy| < M a.e. satisfies

5*1/distQ(vy,SO(z)HHl(Jy) <M.
Q
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Rigidity

Quantitative piecewise geometric rigidity . .. morally

Theorem (cheating version). [Friedrich/S. '15]
Let Q C R? a LipschAitz d9main, M>0and 0 <n<1.
3C=C(Q,M,n), C=C(Q,M,n,...)such that ¥ ¢ > 0:

Suppose y € SBV(; R?) with |y|,|Vy| < M a.e. satisfies
5*1/ dist*>(Vy,S0(2)) + H(J,) < M.
Q

There is a Caccioppoli partition P = (P;); of Q with

ZPer Q) < HY(J)
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Rigidity

Quantitative piecewise geometric rigidity . .. morally

Theorem (cheating version). [Friedrich/S. '15]
Let Q C R? a LipschAitz d9main, M>0and 0 <n<1.
3C=C(Q,M,n), C=C(Q,M,n,...)such that ¥ ¢ > 0:

Suppose y € SBV(; R?) with |y|,|Vy| < M a.e. satisfies
5*1/ dist*>(Vy,S0(2)) + H(J,) < M.
Q

There is a Caccioppoli partition P = (P;); of Q with

ZPer Q) < HY(J)

and, for each P}, a correspondmg rigid motion R; - +¢;, R; € SO(2) and
¢; € R?, such that

u(x) :=y(x) — (Rix+¢j) forxe P
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Rigidity

Quantitative piecewise geometric rigidity . .. morally

Theorem (cheating version). [Friedrich/S. '15]
Let Q C R? a LipschAitz dgmain, M>0and 0 <n<1.
3C=C(Q,M,n), C=C(Q,M,n,...)such that ¥ ¢ > 0:

Suppose y € SBV(; R?) with |y|,|Vy| < M a.e. satisfies

5*1/distQ(vy,SO(z)HHl(Jy) <M.
Q

There is a Caccioppoli partition P = (P;); of Q with

ZPer Q) < HY(J)

and, for each P}, a correspondmg rigid motion R; - +¢;, R; € SO(2) and
¢; € R?, such that

u(x) :=y(x) — (Rix+¢j) forxe P
satisfies the estimates
lullf20) + Zj Isym(R] Vu)|[32(py + "Vl 72y < Ce.
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Rigidity

Modifications

As stated, the theorem cannot be true.

[Py 77 should rather be Py P
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Rigidity

Modifications

As stated, the theorem cannot be true.

[Py 77 should rather be Py P

— We need to
@ introduce a little bit of extra crack, / ‘\
@ neglect small portions of €, / o \

@ modify y slightly: y ~ ¢
(interpolate on neglected regions).
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Rigidity
Modifications

As stated, the theorem cannot be true.

[Py 77 should rather be Py P

— We need to
@ introduce a little bit of extra crack, / ‘\
@ neglect small portions of €, / o \

@ modify y slightly: y ~ ¢ \ / 1
(interpolate on neglected regions).

Caveat: Do not introduce artificial energy! We still want that

/W(Vf/)dx%/ W(Vy)dx and H'(Jy) = H'(J)).
Q Q
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Rigidity

Quantitative piecewise geometric rigidity . ..the full story

Theorem. [Friedrich/S. '15]

Let Q C R? a Lipschitz domain, M >0 and 0 < n,p < 1.

There are constants C = C(Q, M, n), C = C(Q,M,n,p) and ¢ > 0
such that for h > 0 small enough:

Suppose y € SBV(£;R?) with |y|,|Vy| < M a.e. satisfies
h~le .= h71 / dist®(Vy, SO(2)) + H'(J,) < M,
Q

and set Q, = {x € Q : dist(x, 0Q) > cp}.

Then there is an open Q, with [, \ Q,| < Cph~'e, a modification
y € SBV(Q) with |y|,|Vy| < cM and

° H}A/ _yHiZ(Qy) + HV)A’ - VYH%Z(QY) < Cpe,
o HY(JSNQ,) < Chle,
ohlfQ (V9)dx < h™t [ W(Vy)dx + Cph~le,

with the following properties:
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Rigidity

Quantitative piecewise geometric rigidity . ..the full story

There is a Caccioppoli partition P = (P;); of , with
> Per(P;,Q,) < H'(Jy) + Cph~'e
J

and, for each Pj, a corresponding rigid motion R; - +¢;, R; € SO(2) and
G € R?, such that the modified displacement & : Q — R? defined by

sy I - (Rix+g)  forxep,
0 for x e Q\ Q,

satisfies the estimates
(i) H(J) < Chle, (ii) 0z(q, < Ce.
(i) S Isvm(RT V) ey < o (iv) [V, < 17
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Rigidity

Proof strategy

The proof is very long and involved.
Basic (oversimplified) idea:

@ Start with very very small cracks (1% generation).
— Either heal them, if surrounded by a region with small energy,
— or enlarge them to very small cracks by using the (large) energy
of the surrounding region.

@ Consider now very small cracks (2" generation).
@ Andsoon ...
@ Caveat: The (elastic + crack) energy of a region is ‘used’ to

e heal cracks or
e enlarge cracks.

But: Possibly infinitely many generations of scales. Must make sure
that energy is ‘used’ not too often.

Bernd Schmidt (Universitat Augsburg) Quantitative piecewise rigidity and Griffith-Euler-Bernoulli beams



Rigidity

A Korn-Poincaré inequality in SBD

Important ingredient: a novel Korn-Poincaré inequality in SBD obtained
by Friedrich '15.

Theorem (cheating version). [Friedrich '15]

Let e, h, >0 (small), Q cc Q = (—%,1)% There is a constant

C = C(h,) and a universal constant ¢ > 0 such that for all

u € SBD?(@;R?) there is an exceptional set E C Q with

lu = (A +) e < Clle(lE(g) +eH ()

for some A € R32 | ¢ € R2, where

|E] < (1+ ch) (HA(Ju) + e e(u)|2)?

and
HYIE) < (1+ ch)(H (Js) + e e(w)]32).-

Remark. A similar recent results by Chambolle/Conti/Francfort '15 even
works in any dimension, but has no control on OE.
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Rigidity
Other applications

Remark. The crack energy of y can be estimated more thoroughly. In
fact:

. | 7l
Z %Per(P,Q) + /Jy\ U op mln{ @

peP

,1}d%1 < HY(J,) + cp.
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Rigidity
Other applications

Remark. The crack energy of y can be estimated more thoroughly. In
fact:

. | 7l
Z %Per(P,Q) + /Jy\ U op mln{ @

peP

,1}d%1 < HY(J,) + cp.

Example. Nonlinear-to-linear bulk Griffith models in the small strain limit
(cf. Dal Maso, Negri, Percivale '02 for the elastic case).

In the presence of cracks Friedrich '15 obtains a '-convergence result
with a limiting energy defined on triples (u, P, T), where

@ u € SBV(Q;R?), Q C R?, a deformation,

@ P a Caccioppoli partition of Q,

@ T piecewise rigid motion subordinate to P,
of the form

E(u,P,T) = /Q LQ(sym(VTTVu)+H (J\ | 9P)+ > LPer(P; Q).

PeP peP
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Dimension reduction

Overview

e Dimension reduction
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Dimension reduction

Pure elasticity

Warm up: Purely elastic case (cf. Friesecke/James/Miiller '02)
...in a nutshell:

@ Cover beam with small squares W
Q1, Qz, ... of side-length h.

@ Geometric rigidity — approximating
rigid motions R; - +c¢; on Q;.
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Dimension reduction

Pure elasticity

Warm up: Purely elastic case (cf. Friesecke/James/Miiller '02)
...in a nutshell:

@ Cover beam with small squares W
@1, Qo, ... of side-length h.
@ Geometric rigidity — approximating

rigid motions R; - +c¢; on Q;.

@ Estimate on |Ri11 — Ri| — W32
compactness.

Rit1Qis1 + Cit1
RiQi +ci
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Dimension reduction

Pure elasticity

Warm up: Purely elastic case (cf. Friesecke/James/Miiller '02)

...in a nutshell:

@ Cover beam with small squares
Q1, Qz, ... of side-length h.

@ Geometric rigidity — approximating
rigid motions R; - +c¢; on Q;.

@ Estimate on |Ri11 — Ri| — W32
compactness.

@ Fine estimate on h™}(Vv — R;) and
a weak convergence argument give

e limiting infinitesimal strain
@ its xp-linearity and
e the I-liminf inequality.

S

Rit1Qis1 + Cit1
RiQi +ci

A—v(Q)

— RQ+cq
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Dimension reduction
Elasticity + fracture: first steps

Idea: Try a similar approach. Preparations:

@ Cover beam with small (overlapping) squares Q1, Qs, . . ..

@ If energy in Q; large — Q; ‘bad’,
if energy in Q; small — Q; ‘good’. &%
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Dimension reduction
Elasticity + fracture: first steps

Idea: Try a similar approach. Preparations:
@ Cover beam with small (overlapping) squares Q1, Qs, . . ..
@ If energy in Q; large — Q; ‘bad’,
if energy in @; small — Q; ‘good’. &&/
@ In the following, consider portions covered by good squares.

Now apply the quantitative piecewise rigidity estimate on good squares:
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Dimension reduction
Elasticity + fracture: first steps

Idea: Try a similar approach. Preparations:

@ Cover beam with small (overlapping) squares Q1, Qs, . . ..

@ If energy in Q; large — Q; ‘bad’,
if energy in Q; small — Q; ‘good’. &%
@ In the following, consider portions covered by good squares.

Now apply the quantitative piecewise rigidity estimate on good squares:

@ Fix 7= 75 and let p > 0. On each good Q; we get
Q,'7p, Q"7V7 \7,', (P,"j)j, (R,',j)j, (Ci7j)j s.t. ... with C, 6(p)

@ lIsoperimetric inequality = 3 unique large P;; on which
y=Ri1+ ¢
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Dimension reduction
Elasticity + fracture: first steps

Idea: Try a similar approach. Preparations:

@ Cover beam with small (overlapping) squares Q1, Qs, . . ..

@ If energy in Q; large — Q; ‘bad’,
if energy in Q; small — Q; ‘good’. &%
@ In the following, consider portions covered by good squares.

Now apply the quantitative piecewise rigidity estimate on good squares:

@ Fix 7= 75 and let p > 0. On each good Q; we get
Q,'7p, Q"7V7 \7,', (P,"j)j, (R,',j)j, (Ci7j)j s.t. ... with C, 6(p)

@ lIsoperimetric inequality = 3 unique large P;; on which
y=Ri1+ ¢

So ...What’s the problem?
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Dimension reduction
New problems

Problem 1 (a bit severe ... more nasty): We only have the estimate

V0 = Riallizpyy < Idist(Vv, SO@)IIkp, ) —

Still: E.g., estimating R;y1 — R; is still possible. L
(Controlling of | — R;1 - —c,-,1||Lz(p,.,1) and ||sym(R,-7’—1V\7) — Id||,_z(p,.71).)
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Dimension reduction
New problems

Problem 1 (a bit severe ... more nasty): We only have the estimate

IV9 = Riallizp,y < l[dist(Vv, SO@)) 745, -

Still: E.g., estimating R;y1 — R; is still possible. - !
(Controlling of | — R;1 - —c,-,1||Lz(p,.,1) and ||sym(R,-7’—1V\7) — Id||,_z(p,.71).)

Problem 2 (more severe): Eventually, we must take the limit p — 0.
But Qip, Qiv, Ui, (Pij)j, (Rij)j, (cij)j and C depend on p.
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Dimension reduction
New problems

Problem 1 (a bit severe ... more nasty): We only have the estimate

V0 = Riallizpyy < Idist(Vv, SO@)IIkp, ) —

Still: E.g., estimating R;y1 — R; is still possible. L
(Controlling of | — R;1 - —c,-,1||Lz(p,.,1) and ||sym(R,-7’—1V\7) — Id||,_z(p,.71).)

Problem 2 (more severe): Eventually, we must take the limit p — 0.
But Qip, Qiv, Ui, (Pij)j, (Rij)j, (cij)j and C depend on p.

Problem 3 (most severe): To identify the limiting infinitesimal strain, we
need to join the different ¥; to one single beam deformation V.
Note: Piecewise gluing — too much crack,

mollification thereof — too high energy near small cracks.

Instead: Blend smoothly with partitions of unity: ¥ =", ;¥
(only cheating a bit).
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Dimension reduction

Two main difficulties

Two challenges to overcome:

1. Vi = e + VA = =
’ Z%V - Z«p ) (—\go(o,-)

must be very good for energy
small! estimates

S . T RQ+q
Must ensure that ¥; is not ‘too good'. Qi+ ci

Need sharp estimates on ;1 — ¥; on overlap Q,; N Q,,i+1, also where
U; % v. (In fact, will get only sufficiently strong LP-estimates for p < 2.)
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Dimension reduction
Two main difficulties

Two challenges to overcome:

1. Vv = e + PAVAZS e
v Z(pv 1 ng 17 (—\ o)

must be very good for energy

small! estimates
7 RQi+ci

Must ensure that v; is not ‘too good'.
Need sharp estimates on ;1 — ¥; on overlap Q,; N Q,,i+1, also where
U; % v. (In fact, will get only sufficiently strong LP-estimates for p < 2.)

2. Linearity of the limiting infinitesimal strain in xp, morally
S - [
az(il[)noh l(Rh)Tvv)ll :y// 'yIJ_.
Problem: VV is not a derivative.

Trick: Consider (IN?h)T\”/. Using a novel GSBD compactness argument
due to Dal Maso '13, we get, morally, 82(’!im0 h*1V[(Rh)TV])11 =0.
—

— Can move V to R
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Dimension reduction
LLELLS

Thank you for your attention!
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