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Nonlinear elasticity theory

Elastostatics: Understand stable deformations of a block Ω of elastic
material, subject to boundary conditions and applied loads.

�� ��

��

�� ��

��

-
v

Ω v(Ω)
Ω ⊂ Rd , d = 2, 3: ref’config.
v : Ω→ Rd : deformation.

Hyper-elastic energy functional for a bulk material on W 1,2(Ω;Rd):

Eelast(v) =

∫
Ω

W
(
∇v(x)

)
dx ,

with stored energy function W : Rd×d → R which is

frame indifferent, ≥ 0 with W (F ) = 0 ⇐⇒ F ∈ SO(d),

sufficiently regular,

non-degenerate: W (F ) ≥ c dist2(F ,SO(n)).
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Classical beam theory

Interesting in many applications: thin objects such as membranes,
plates, shells, rods and beams.

New phenomena: Large deformations at low energy (crumpling,
bending).

The basic example: A planar beam.

-
vΩ v(Ω) Ω = (0, L)× (− h

2 ,
h
2 ), h� L,

v : Ω→ R2.

Euler-Bernoulli theory: Energy functional for bending dominated
configurations in terms of the mid-line deformation.

EEB(v) =
αh3

24

∫ L

0

|κ(t)|2 dt,
κ: curvature of t 7→ v(t, 0),
α the Euler-Bernoulli constant.

Note: α is the ‘Poisson effect relaxed’ elastic modulus
(cf. Friesecke/James/Müller ’02).
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Energy scaling

Classical problem in elasticity theory: Derive effective energy
functionals in the limit of singular geometries.

For a beam with

E h
elast(v) =

∫
Ωh

W (∇v),

E h
elast ∼ h: nonlinear finite strains

(finite energy per unit volume)

E h
elast ∼ h3: small strain, finite bending

E h
elast � h3: small deflection

For rigorous Γ-convergence results (even 3D → 2D), see

LeDret/Raoult ’93: membranes

Friesecke/James/Müller ’02 & ’06: hierarchy of plate theories
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Variational fracture mechanics

Fracture:

-
v

Ω v(Ω)
deformation v ∈ SBV (Ω;Rd).
- jumps on codim 1 surface Jv ,
- Dv = ∇vLd outside Jv .

Griffith-type energy functional (cf. Francfort/Marigo):

EGriff(v) =

∫
Ω\Jv

W (∇v)︸ ︷︷ ︸
elastic energy

+βHd−1(Jv )︸ ︷︷ ︸
crack energy

, W : stored energy function,
β: crack energy / surface area
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The model and the main goal

Goal: Find effective theory for thin brittle beams for bending dominated
configurations: a Griffith-Euler-Bernoulli theory.

E h
Griff(v) =

∫
Ωh\Jv

W (∇v)+βhHd−1(Jv ),
Ωh = (0, L)× (− h

2 ,
h
2 ), h� L,

v ∈ SBV (Ωh;R2).

Energy scaling:

Purely elastic (no cracks):
∫

Ω\Jv W (∇v) ∼ h3.

Breaking vertically into several pieces: ∼ βhh.

Consequence: To model materials which

respond elastically to small (e.g. infinitesimal) deflection,

may fracture at large (finite) bending,

we assume that βh = h2β.

Goal: Determine the Γ-limit of h−3E h
Griff as h→ 0.

Bernd Schmidt (Universität Augsburg) Quantitative piecewise rigidity and Griffith-Euler-Bernoulli beams
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Main result

More precise setup:
Rescale to common domain Ω = Ω1 via y(x1, x2) = v(x1, hx2)
and for a large fixed M � 1 let

I h(y) = h−3

∫
Ωh

W (∇v) dx + h−1βH1(Jv )

if v ∈ SBV (Ω;R2),max{‖v‖L∞ , ‖∇v‖L∞} ≤ M. (Extend to all of
SBV (Ω;R2) by +∞.)

Remark. M models a large box containing v(Ωh) and also forbids
(unphysically) large strains.

If y(x) = ȳ(x1) for a.e. x ∈ Ω we also set

I 0(y) =
α

24

∫ L

0

|κ(t)|2 dt + β#(Jȳ ∪ Jȳ ′),

if ȳ ∈ PW-W 2,2((0, L);R2), |ȳ | ≤ M and |ȳ ′| = 1 a.e., κ = ȳ ′′ · (ȳ ′)⊥.
(Extend to all of SBV (Ω;R2) by +∞.)
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Main result

Theorem. (Gamma-convergence) [S. ’16]
The I h Γ-converge to I 0 on SBV (Ω;R2) (w.r.t. L1) as h→ 0, i.e.,

(i) lim inf inequality:
whenever yh → y in L1,

lim inf
h→0

I h(yh) ≥ I 0(y);

(ii) recovery sequences:
∀ y ∃ yh with yh → y in L1 s.t.

lim
h→0

I h(yh) = I 0(y).

Theorem. (Compactness) [S. ’16] If I h(yh) ≤ C (C independent of h),
then for a subsequence (not relabeled) yh → y in L1 for some y .

Remarks.

In fact, yh → y , ∂1yh → y ′, h−1∂2yh → y ′⊥ in Lp strongly for all
p <∞ and Dsyh ∗⇀ Dsy weakly* as Radon measures.

Body forces and clamped boundary conditions can be included.

Entails a convergence theorem for (almost) minimizers (subject to
suitable body forces and boundary conditions).

Bernd Schmidt (Universität Augsburg) Quantitative piecewise rigidity and Griffith-Euler-Bernoulli beams
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Different energy scalings

Note: Other choices for the scaling behavior of β are possible, e.g.:

βh ∼ 1: EGriff ∼ h3 =⇒ limiting energy purely elastic.

Should instead look at EGriff ∼ h:

nonlinear finite strain deformation ∼ vertical crack

=⇒ Griffith type membrane theory
(cf. Braides/Fonseca ’01 and Babadjian ’06 even 3D → 2D).

Applies to ‘not too brittle’ materials.
→ crumpling favored over fracture

βh � h2: EGriff ∼ h3 =⇒ limiting energy trivial (cracks for free).

Should instead look at EGriff ∼ hβh:

infinitesimal deflection ∼ vertical crack

=⇒ Griffith type small deflection beam theory
(in analogy to the results presented).

Applies to ‘very brittle’ materials.

Bernd Schmidt (Universität Augsburg) Quantitative piecewise rigidity and Griffith-Euler-Bernoulli beams
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Geometric rigidity: known results

Basic ingredient in the derivation of effective theories for elastic plates
(cf. Friesecke/James/Müller ’02 & ’06): a quantitative geometric rigidity
estimate.

Theorem. [Friesecke/James/Müller ’02] Let Ω ⊂ Rd a (connected)
Lipschitz domain. For all y ∈W 1,2(Ω,Rd) there is R ∈ SO(d) s.t.

‖∇y − R‖L2(Ω) ≤ C (Ω) ‖dist(∇y ,SO(d))‖L2(Ω) .

Problem: Cannot be true on SBV .

But there is a qualitative version:

Theorem. [Chambolle/Giacomini/Ponsiglione ’07] Suppose
y ∈ SBV (Ω;Rd), H1(Jy ) <∞ and ∇y ∈ SO(d) a.e. Then there exists a
(Caccioppoli) partition (Pi ) and Ri ∈ SO(d), ci ∈ Rd such that

y(x) =
∑
i

(Rix + ci )χPi (x).

I.e.: y is a collection of an at most countable family of rigid deformations

Bernd Schmidt (Universität Augsburg) Quantitative piecewise rigidity and Griffith-Euler-Bernoulli beams
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Quantitative SBV rigidity: difficulties

Problem: We need a quantitative version! =⇒ serious difficulties, e.g.:

Thin ‘tunnels’ connecting large regions close to different rotations.

Highly irregular crack geometry → no uniform rigidity estimates

Infinite crack patterns accumulating on different scales.

∇y ≈ R1

∇y ≈ R2

Ω

∇y ≈ ??
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Could even have a dense crack set.
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Quantitative piecewise geometric rigidity . . . morally

Theorem (cheating version). [Friedrich/S. ’15]
Let Ω ⊂ R2 a Lipschitz domain, M > 0 and 0 < η < 1.
∃ C = C (Ω,M, η), Ĉ = Ĉ (Ω,M, η, . . .) such that ∀ ε > 0:

Suppose y ∈ SBV (Ω;R2) with |y |, |∇y | ≤ M a.e. satisfies

ε−1

∫
Ω

dist2(∇y ,SO(2)) +H1(Jy ) ≤ M.

There is a Caccioppoli partition P = (Pj)j of Ω with∑
j

1
2Per(Pj ,Ω) ≤ H1(Jy )

and, for each Pj , a corresponding rigid motion Rj ·+cj , Rj ∈ SO(2) and
cj ∈ R2, such that

u(x) := y(x)− (Rj x + cj) for x ∈ Pj

satisfies the estimates

‖u‖2
L2(Ω) +

∑
j
‖sym(RT

j ∇u)‖2
L2(Pj )

+ εη‖∇u‖2
L2(Ω) ≤ Ĉε.
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∃ C = C (Ω,M, η), Ĉ = Ĉ (Ω,M, η, . . .) such that ∀ ε > 0:

Suppose y ∈ SBV (Ω;R2) with |y |, |∇y | ≤ M a.e. satisfies

ε−1

∫
Ω

dist2(∇y ,SO(2)) +H1(Jy ) ≤ M.

There is a Caccioppoli partition P = (Pj)j of Ω with∑
j

1
2Per(Pj ,Ω) ≤ H1(Jy )

and, for each Pj , a corresponding rigid motion Rj ·+cj , Rj ∈ SO(2) and
cj ∈ R2, such that

u(x) := y(x)− (Rj x + cj) for x ∈ Pj

satisfies the estimates

‖u‖2
L2(Ω) +

∑
j
‖sym(RT

j ∇u)‖2
L2(Pj )

+ εη‖∇u‖2
L2(Ω) ≤ Ĉε.
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Modifications

As stated, the theorem cannot be true.

P1 ?? should rather be P1 P2

→ We need to

introduce a little bit of extra crack,

neglect small portions of Ω,

modify y slightly: y  ŷ
(interpolate on neglected regions).

Caveat: Do not introduce artificial energy! We still want that∫
Ω

W (∇ŷ) dx ≈
∫

Ω

W (∇y) dx and H1(Jŷ ) ≈ H1(Jy ).
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Quantitative piecewise geometric rigidity . . . the full story

Theorem. [Friedrich/S. ’15]
Let Ω ⊂ R2 a Lipschitz domain, M > 0 and 0 < η, ρ < 1.
There are constants C = C (Ω,M, η), Ĉ = Ĉ (Ω,M, η, ρ) and c > 0
such that for h > 0 small enough:

Suppose y ∈ SBV (Ω;R2) with |y |, |∇y | ≤ M a.e. satisfies

h−1ε := h−1

∫
Ω

dist2(∇y ,SO(2)) +H1(Jy ) ≤ M,

and set Ωρ = {x ∈ Ω : dist(x , ∂Ω) > cρ}.

Then there is an open Ωy with |Ωρ \ Ωy | ≤ Cρh−1ε, a modification
ŷ ∈ SBV (Ω) with |y |, |∇y | ≤ cM and

‖ŷ − y‖2
L2(Ωy ) + ‖∇ŷ −∇y‖2

L2(Ωy ) ≤ Cρε,

H1(Jŷ ∩ Ωρ) ≤ Ch−1ε,

h−1
∫

Ωρ
W (∇ŷ) dx ≤ h−1

∫
Ω

W (∇y) dx + Cρh−1ε,

with the following properties:
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Quantitative piecewise geometric rigidity . . . the full story

There is a Caccioppoli partition P = (Pj)j of Ωρ with∑
j

1
2Per(Pj ,Ωρ) ≤ H1(Jy ) + Cρh−1ε

and, for each Pj , a corresponding rigid motion Rj ·+cj , Rj ∈ SO(2) and
cj ∈ R2, such that the modified displacement û : Ω→ R2 defined by

û(x) :=

{
ŷ(x)− (Rj x + cj) for x ∈ Pj

0 for x ∈ Ω \ Ωρ

satisfies the estimates

(i) H1(Jû) ≤ Ch−1ε, (ii) ‖û‖2
L2(Ωρ) ≤ Ĉε,

(iii)
∑

j
‖sym(RT

j ∇û)‖2
L2(Pj )

≤ Ĉε, (iv) ‖∇û‖2
L2(Ωρ) ≤ Ĉε1−η.
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Proof strategy

The proof is very long and involved.
Basic (oversimplified) idea:

Start with very very small cracks (1st generation).
→ Either heal them, if surrounded by a region with small energy,
→ or enlarge them to very small cracks by using the (large) energy
of the surrounding region.

Consider now very small cracks (2nd generation).

And so on . . .

Caveat: The (elastic + crack) energy of a region is ‘used’ to

heal cracks or
enlarge cracks.

But: Possibly infinitely many generations of scales. Must make sure
that energy is ‘used’ not too often.
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A Korn-Poincaré inequality in SBD

Important ingredient: a novel Korn-Poincaré inequality in SBD obtained
by Friedrich ’15.

Theorem (cheating version). [Friedrich ’15]
Let ε, h∗ > 0 (small), Q̃ ⊂⊂ Q = (− 1

2 ,
1
2 )2. There is a constant

C = C (h∗) and a universal constant c > 0 such that for all
u ∈ SBD2(Q;R2) there is an exceptional set E ⊂ Q̃ with

‖u − (A ·+c)‖2
L2(Q̃\E)

≤ C
(
‖e(u)‖2

L2(Q) + εH1(Ju)
)

for some A ∈ R2×2
skew, c ∈ R2, where

|E | ≤ (1 + ch∗)
(
H1(Ju) + ε−1‖e(u)‖2

L2

)2

and
H1(∂E ) ≤ (1 + ch∗)

(
H1(Ju) + ε−1‖e(u)‖2

L2

)
.

Remark. A similar recent results by Chambolle/Conti/Francfort ’15 even
works in any dimension, but has no control on ∂E .
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Other applications

Remark. The crack energy of ŷ can be estimated more thoroughly. In
fact:∑

P∈P

1
2Per(P; Ω) +

∫
Jŷ\

⋃
P∈P

∂P

min
{∣∣∣ [ŷ ]√

ερ

∣∣∣, 1}dH1 ≤ H1(Jy ) + cρ.

Example. Nonlinear-to-linear bulk Griffith models in the small strain limit
(cf. Dal Maso, Negri, Percivale ’02 for the elastic case).
In the presence of cracks Friedrich ’15 obtains a Γ-convergence result
with a limiting energy defined on triples (u,P,T ), where

u ∈ SBV (Ω;R2), Ω ⊂ R2, a deformation,

P a Caccioppoli partition of Ω,

T piecewise rigid motion subordinate to P,

of the form

E (u,P,T ) =

∫
Ω

1
2 Q
(
sym(∇TT∇u)

)
+H1(Ju\

⋃
P∈P

∂P)+
∑
P∈P

1
2Per(P; Ω).
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Overview

1 Introduction: elasticity & fracture

2 Thin brittle beams

3 Quantitative piecewise geometric rigidity

4 Dimension reduction
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Pure elasticity

Warm up: Purely elastic case (cf. Friesecke/James/Müller ’02)
. . . in a nutshell:

Cover beam with small squares
Q1,Q2, . . . of side-length h.

Geometric rigidity→ approximating
rigid motions Ri ·+ci on Qi .

Estimate on |Ri+1 − Ri | → W 2,2

compactness.

Fine estimate on h−1(∇v −Ri ) and
a weak convergence argument give

limiting infinitesimal strain
its x2-linearity and
the Γ-lim inf inequality.

RiQi + ci
Ri+1Qi+1 + ci+1

v(Qi )

RiQi + ci
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Elasticity + fracture: first steps

Idea: Try a similar approach. Preparations:

Cover beam with small (overlapping) squares Q1,Q2, . . ..

If energy in Qi large → Qi ‘bad’,
if energy in Qi small → Qi ‘good’.

In the following, consider portions covered by good squares.

Now apply the quantitative piecewise rigidity estimate on good squares:

Fix η = 9
10 and let ρ > 0. On each good Qi we get

Qi,ρ, Qi,v , v̂i , (Pi,j)j , (Ri,j)j , (ci,j)j s.t. . . . with C , Ĉ (ρ).

Isoperimetric inequality =⇒ ∃ unique large Pi,1 on which
ŷ ≈ Ri,1 + ·ci,1.

So . . . What’s the problem?
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Isoperimetric inequality =⇒ ∃ unique large Pi,1 on which
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New problems

Problem 1 (a bit severe . . . more nasty): We only have the estimate

‖∇v̂ − Ri,1‖L2(Pi,1) ≤ ‖dist(∇v ,SO(2))‖9/10
L2(Pi,1).

Still: E.g., estimating Ri+1 − Ri is still possible.

(Controlling of ‖v̂ − Ri,1 · −ci,1‖L2(Pi,1) and ‖sym
(
RT
i,1∇v̂

)
− Id‖L2(Pi,1).)

Problem 2 (more severe): Eventually, we must take the limit ρ→ 0.
But Qi,ρ, Qi,v , v̂i , (Pi,j)j , (Ri,j)j , (ci,j)j and Ĉ depend on ρ.

Problem 3 (most severe): To identify the limiting infinitesimal strain, we
need to join the different v̂i to one single beam deformation ṽ .

Note: Piecewise gluing → too much crack,
mollification thereof → too high energy near small cracks.

Instead: Blend smoothly with partitions of unity: ṽ =
∑

i ϕi v̂i
(only cheating a bit).
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Two main difficulties

Two challenges to overcome:

1. ∇ṽ =
∑
i

ϕ′i v̂i ⊗ e1︸ ︷︷ ︸
must be very

small!

+
∑
i

ϕi ∇v̂i .︸ ︷︷ ︸
good for energy

estimates

Must ensure that v̂i is not ‘too good’.

v̂(Qi )

RiQi + ci

Need sharp estimates on v̂i+1 − v̂i on overlap Qρ,i ∩ Qρ,i+1, also where
v̂i 6≈ v . (In fact, will get only sufficiently strong Lp-estimates for p < 2.)

2. Linearity of the limiting infinitesimal strain in x2, morally

∂2

(
lim
h→0

h−1(R̃h)T∇ṽ
)

11

!
= ȳ ′′ · ȳ ′⊥.

Problem: ∇ṽ is not a derivative.

Trick: Consider (R̃h)T ṽ . Using a novel GSBD compactness argument
due to Dal Maso ’13, we get, morally, ∂2

(
lim
h→0

h−1∇[(R̃h)T ṽ ]
)

11
= 0.

→ Can move ∇ to R̃h.
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Two main difficulties

Two challenges to overcome:

1. ∇ṽ =
∑
i

ϕ′i v̂i ⊗ e1︸ ︷︷ ︸
must be very

small!

+
∑
i

ϕi ∇v̂i .︸ ︷︷ ︸
good for energy

estimates

Must ensure that v̂i is not ‘too good’.

v̂(Qi )

RiQi + ci

Need sharp estimates on v̂i+1 − v̂i on overlap Qρ,i ∩ Qρ,i+1, also where
v̂i 6≈ v . (In fact, will get only sufficiently strong Lp-estimates for p < 2.)

2. Linearity of the limiting infinitesimal strain in x2, morally

∂2

(
lim
h→0

h−1(R̃h)T∇ṽ
)

11

!
= ȳ ′′ · ȳ ′⊥.

Problem: ∇ṽ is not a derivative.

Trick: Consider (R̃h)T ṽ . Using a novel GSBD compactness argument
due to Dal Maso ’13, we get, morally, ∂2

(
lim
h→0

h−1∇[(R̃h)T ṽ ]
)

11
= 0.

→ Can move ∇ to R̃h.
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Thanks

Thank you for your attention!
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