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Activities
Opening Workshop
— August 2017, at SAMSI (Research Triangle Park, North Carolina)

Closing (Transition) Workshop
— May 2018, at SAMSI

Visitors in residence for all or part of program
Postdoc opportunities

Additional workshops

— Possible venues LBNL, NCAR, CICS (at NCDC), possible joint workshop with
Newton Institute

Current proposed topics for working groups:
— Reconstructing climate databases using remote sensing data;
— Global carbon cycle;
— Parameter estimation in climate models;
— Data assimilation;
— Applications of data analytics to climate science;
— Climate prediction;
— Climate extremes;
— Stochastic parameterizations;
— Climate and health;
— Applications of dynamical systems and agent-based models to food systems.



How To Get Involved

Workshops by invitation or open registration

— For most participants, SAMSI will pay travel and hotel
costs

— Registration via www.samsi.info

Visitor positions open for application

— Travel and accommodation expenses

— For some participants, partial salary support
— Email rls@samsi.info

Postdoc applications: closing date in December
2016

— Please encourage qualified applicants to apply!
— Application details on www.samsi.info
Working group participation is open to all
— Webex



Objectives of This Talk

 Two problems

— How to “attribute” extreme events to anthropogenic
or natural causes (Fraction of Attributable Risk; Stott,
Stone, Allen 2004 and much since))

— Projection of future extreme events (Christidis, Jones,
Stott 2014)

* The specific idea: develop a method that can be
applied to archived climate model runs, without
the need for intensive model runs tailored to a
specific event

— A caveat: the results are only as good as the models

that generate them — absence of evidence (of an
anthropogenic effect) is not evidence of absence



The Method of Pall et al. (Nature, 2011)

Pall et al. proposed a

simpler method based on Power Calculation:

counting of extreme

events in a large Sample size required to distinguish two event probabilities in a
ensemble of “several test of size 0.05 at power 0.8.

thousand model runs”

(climateprediction.net) Nl Ratio of Probabilities

The method seems Probability 2 4 6 8 10
effective if you have a 0.05 422 71 31 18 | 11
large ensemble and the 0.025 880 144 | 67 | 41 | 28
probabilities are not too 0.01 2,239 384 | 170 | 104 | 73
small 0.001 |about 23,000 | 3,863 | 1,728 | 1,057 | 743

However, power - . ‘
calculations show that Highlighted cases correspond to two versions of the analysis by

the method could Pall et al., and the probability values given in Stott, Stone and
become extremely data  Allen (2004)
intensive if the estimated

probabilities are truly Conclusion: the method could become extremely data intensive
small



Data

* Observational data from CRU TS 3.22 — |land surface
monthly average temperatures (°C) on 0.5°x0.5° grid
boxes, aggregated to JJA over

— Europe: spatial averages over 10°W-40°E, 30°N-50°N
— Russia: spatial averages over 30°E-60°E, 45°N-65°N
— Central USA: spatial averages over 90°W-105°W, 25°N-45°N

* Climate model data from CMIP5
— 40 climate models
— 142 total runs “historical”
— 60 total runs “historical natural”
— 74 total runs rcp8.5
— Same spatial regions as observational data
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Approach for a Single Series

Generalized Extreme Value Distribution (GEV) with covariates to represent trend
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e Peaks over threshold approach: fit GEV to exceedances over threshold u, treat
Y: < u as censored

e u chosen as one of 75th, 80th or 85th percentile
e Covariates {xy;, 1 < k < K} chosen to represent spline basis functions

e K chosen by AIC, no formal selection of threshold but run different thresholds
for comparison

e Bayesian predictive analysis: use MCMC to calculate a posterior density for the
probability of crossing a given high level in a given year



Model Selection

Region Threshold Percentile
70% | 75% | 80% | 85%
Europe D 3 6 3
Russia 3 3 2 3

CentUSA 3 3 3 3

Table 2: Best value of K by BIC for each region and threshold
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Mean Summer Temperature

Observational Data with Fitted 80t

Percentile for Each Year (four curves
represent 70%, 75%, 80%, 85% thresholds)
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Exceedance Probability of the extreme value of interest in each

Posterior Densities for Exceedance Probabilities

Compute posterior density for the Binary LOg Threshold

of 4 years (80% threshold)
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Question for Discussion

Even if we have a posterior distribution for the parameter of
interest, how do we display the results?
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Question for Discussion

Is it more meaningful to compute these probabilities using all
data including the extreme event of interest, or should we “stop

the clock” before that observed event?

(Results presented here used the first method)
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Other Datasets

1} European
temperatures in
early August

77 2003, relative to
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Other Datasets — Europe Temperatures

ue Box: Region of Stott et al. (
d Box: Proposed Region
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Other Datasets — US Summer Drought
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Other Datasets — New Time Series
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Comparing Observations and Models |
All-forcings models (Europe)
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Comparing Observations and Models II:
Natural-forcings models (Europe)
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Summary So Far

* Bayesian approach to extreme value modeling
allows us to construct posterior distributions
for a high-threshold exceedance based on
observational data

* Clear differences in 2013 against any of 1940,
1960, 1980 but cannot attribute this to human

influence

 Comparison of observational and model data
suggests a population of models approach —
naturally leads into hierarchical modeling
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Outline of Hierarchical Model

©;: parameter vector for model j, j=0,...,N,, where N, is
the number of models (j=0: observational data)

Prior distribution: the ©,s are IID from a multivariate
normal distribution with mean M and precision matrix
D (extension: YD for j=0, possibly y#1)

Fit by Markov Chain Monte Carlo (MCMC)

Do this once for anthropogenic forcings, again for
natural forcings

Extension: extrapolate to future decades under your
favorite rcp scenario — basis for future projections of
extreme event probabilities
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Proposed Hierarchical Model
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Bayesian Statistics Details

Model Specification
o (My,D1) ~WN,(A,m, M*, F), Wishart-Normal prior with density

x |D1|™ /2 exp [—Str {Dy (A + F(My — M*)(M; — M*)T) }].
e Given M;, Dy, 619 9(1N) are IID ~ N,(My, D;1).
e Given 913 Y(1.J) generated by GEV with parameters 6(1.J)
(Y©Ps) for j =0, if==1)
e Similar structure for Mg, Dy etc.

e We can expand this model by defining 649 ~ N,(M1, (¥'D1)~ ') where
Y represents departure from exchangeability (¢ = 1 is exchangeable).
However, ¢ is not identifiable — we can only try different values as a
sensitivity check.

Computation
o (My,Dy) | 60D, 60N ~ WN,(A,m,NM*, F), where m = m + N, F =

m,
F+ N,M* = (FM* +3Y, gtu)) JF, A=A+ FMMT+Y @7 _
T
e Metropolis update for (1:1)  9(L.N) given My, D; and Y's
e Metropolis update for 6(1:9) based on conditional density
T
exp {—% (ﬁ““” . Ml) D, (e“-ﬂ) - Ml) } L (efm; Y(Dbf'?’)

where L is likelihood for #(1.9) given data Y(©Ps) and = =1
e Similar updates for = = 0 side of picture; up to 1,000,000 iterations



Prob. of Extreme Event

Posterior Densities (Central USA)

Exceedance Probabilities Posterior Densities Binary Log Risk
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Prob. of Extreme Event

Posterior Densities (Russia)

Exceedance Probabilities Posterior Densities Binary Log Risk
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Prob. of Extreme Event

Posterior Densities (Europe)

Exceedance Probabilities Posterior Densities Binary Log Risk

by Year for Europe for Europe Ratio for Europe
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Quantiles of the Posterior Density of the
Binary Log Risk Ratio (BLORRAT)

Quantile | 5% | 10% | 25% | 33% | 50% | 66% | 75% | 90% | 95%

FEurope | 0.11 | 0.22 | 0.68 | 1.03 | 2.22 | 4.34 | 7.03 | 23.15 | 56.24
Russia | 0.30 | 0.51 | 1.18 | 1.64 | 3.07 | 5.65 | 885 | 26.95 | 57.27
CentUSA | 0.85 | 1.26 | 2.55 | 3.36 | 5.48 | 9.18 | 12.79 | 30.97 | 54.84




Probability

Changes in Projected Extreme Event Probabilities Over Time
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Future Work

* This is still very much a “vanilla MCMC” algorithm:
apart from needing more tuning, possibilities for
treating K or the threshold as unknowns, alternatives
to multivariate normal (e.g. Dirichlet process) for
prior distributions

* Bivariate extensions, e.g. joint distributions of
temperature and precipitation

e Fully spatial model — possibility of hierarchical
models based on max-stable processes — (need a
“full likelihood” — problematic but see Wadsworth
and Tawn (2014), Thibaud et al. (2016, in review) for
recent developments)
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