Regularity and symplectic properties of traceless SU(2) character varieties of tangles

Christopher Herald

Department of Mathematics and Statistics University of Nevada, Reno

March 21, 2016

Kronheimer-Mrowka Singular Instanton Knot Homology $I^{\natural}(K)$

$$K \subset S^3$$
 Set $X = S^3 \setminus (K \cup H \cup W)$.
 $\mathcal{A}^{\natural} = \{ \text{singular } SU(2) \text{ connections on } X, \text{ traceless along } K \text{ and } H,$
giving nontrivial $SO(3)$ bundle with w_2 dual to $W \}$
Take Morse homology of $cs : \mathcal{A}^{\natural}/\mathcal{G} \to \mathbb{R}/\mathbb{Z}.$
Critical pts $\leftrightarrow \{ \text{traceless singular flat } SU(2) \text{ connections on } X \}/\mathcal{G}$
Conditions:

$$hol_{\mu_K}(A)$$
 traceless
 $hol_{\mu_H}(A)$ traceless
 $hol_{\mu_W}(A) = -1$

Figure: Add an earring to knot K.

< 同 > < 三 >

э

 $cs: \mathcal{A}^{\natural}/\mathcal{G} \to \mathbb{R}$ is, at best, Bott-Morse with many critical circles. (An incompressible T^2 separates knot complement from $K \cup H \cup W$; most flat connections are irreducible on both sides.) Thus, one must perturb to get a Morse function.

- $I^{\natural}(K)$ is \mathbb{Z}_4 graded.
- $I^{\natural}(K)$ is isomorphic to sutured Floer theory, which categorifies $\Delta(K) = \sum c_i t^i$. Thus $\sum |c_i| \leq \text{Rank } I^{\natural}(K) \leq \text{Rank } CI^{\natural}(K)$.
- There is a spectral sequence with E_2 page $Kh^{red}(\overline{K})$ abutting to $I^{\natural}(K)$, so Rank $I^{\natural}(K) \leq \text{Rank } KH^{red}(\overline{K})$.

There is no combinatorial definition of $I^{\natural}(K)$. Calculations have only been possible where these bounds determine $I^{\natural}(K)$.

This talk is about work of $H^r K$, r = 0, 1, 2, 3, exploring a Lagrangian Floer homology related to the $I^{\ddagger}(K)$. {Hedden, –, Hogancamp, Kirk}

Identify the critical set of $cs: \mathcal{A}^{\natural}/\mathcal{G} \to \mathbb{R}/\mathbb{Z}$ with

 $R^{\natural}(X) = \{SU(2) \text{ reps } | Tr(\rho(\mu_K)) = Tr(\rho(\mu_H)) = 0, \rho(\mu_W) = -1\}/\text{conj}$

which can be calculated from a π_1 presentation.

Overall goal: get a more tractable, topological definition of boundary operators defining $I^{\natural}(K)$, without instantons.

▲御▶ ▲臣▶ ★臣▶ ―臣 … わえる

The Pillowcase and a Tangle Decomposition of K

Let a 2-sphere split K into two 2-tangles:

- T_0 =trivial 2-tangle with earring.
- T_1 =the rest of K.

Figure: T_0

 $R(S^2 \setminus 4 \text{ points}) = \{\text{homomorphisms } \rho : \pi_1(S^2 \setminus 4 \text{ points}) \to SU(2) \mid \\ \text{all } 4 \text{ generators go to traceless elements} \}/\text{conjugation}$

The four π_1 elements linking K in S^2 are sent to **i**, $e^{\gamma \mathbf{k}}$ **i**, $e^{\theta \mathbf{k}}$ **i**, $e^{(\theta - \gamma)\mathbf{k}}$ **i**.

 $R(S^2 \setminus 4 \text{ points}) = \{(\theta, \gamma) \in [0, \pi] \times [0, 2\pi]\} / \sim$, edges identified to make pillowcase. Only the four corners are abelian.

Fiber Product Structure

Circles arise here due to fibration from $R^{\natural}(B \setminus (\operatorname{arcs} \cup \operatorname{earring}))$ to its image in pillowcase. In this illustration, pink arc hits blue arc in three points, with preimage two circles and a point.

Transversality in Gauge Theory vs Topology

"Holonomy perturbations" in gauge theory definition can be interpreted as follows.

- Drill out more curves (adding more generators to π_1 .
- Impose certain relations between the meridinal and longitudinal holonomies of these new link components.

Theorem (H,-,K)

Doing this with the curve P in the standard tangle causes each circle to contribute two generators to the chain complex.

Theorem (-,K)

There are also curves in the outside tangle complement that make $R_{\pi}(outside \ tangle)$ into a 1-manifold.

After these perturbations π , we obtain a pair of 1-manifolds in the pillowcase. The traceless perturbed character variety for the part with the earring misses the singular corner points.

Lagrangian Floer Homology in Pillowcase

• Recent work by Abouzaid and de Silva-Robbin-Salamon simplifies Lagrangian Floer homology $FH(L_1, L_2)$ in 2D surface. Boundary operator is combinatorially defined, i.e., ∂ defined by counting immersed disks.

Requirements:

- Surface needs noncompact universal cover
- Need immersed 1-manifolds with no fish tails (i.e., no double points creating null homotopic loop)
- L_1, L_2 are homotopically essential.
- Covers of L_1 and L_2 are not homotopic.

Theorem

 $FH(L_1, L_2)$ depends only on the homotopy classes of L_1, L_2 .

→ 3 → 4 3

We extend the definition to the pillowcase P=2-sphere with "corners".

- $L_1 = R_{\pi}^{\natural} (B \setminus T_0)$ (traceless representation variety for arcs with earring) misses corners.
- $L_2 = R(B \setminus T_1)$ hits corners, but with well-defined tangent direction.

Ultimately, we can extend combinatorial Lagrangian Floer theory to pillowcase with neighborhoods of corners deleted.

Using A_2 , A_3 relation in this context we show, for an appropriate class of Lagrangians:

・四・ ・ヨ・ ・ヨ・

Theorem (H,-,K)

 $FH(L_1, L_2)$ depends only on homotopy classes of L_1 and L_2 in $P \setminus \{corners\}.$

Gradings

 $I^{\natural}(K)$ is \mathbb{Z}_4 graded. Adapting Seidel's graded Lagrangians, we define a relative \mathbb{Z}_4 grading $FH(L_1, C)$ when:

- $L_1 = R^{\natural}_{\pi}(T_0)$
- C=circle, or arc connecting corners of P, without fishtails

Theorem (H,-,K)

For all 2-bridge knots K, and all torus knots K checked so far, there is

- a tangle decomposition $K = T_0 \cup T_1$,
- perturbations in T_0 and T_1 making $R^{\natural}(T_1)$ and $R(T_0)$ smooth,

$$\bigoplus_{i=0}^k FH(L_1,C_i) \cong I^{\natural}(K).$$

More work is needed to show the traceless representation varieties never have fish tails, and that $FH(R^{\natural}(T_0), R(T_1))$ is not dependent on choice of perturbation or tangle decomposition.

Further partial results

The Lagrangians in the pillowcase form an A^{∞} category.

Theorem (H,-,Hogancamp,K) Given an outer tangle T_1 with $R(T_1) = L$, for the three ways to put in the trivial tangle with earring $\{T_0, T_+, T_-\}$, set $L_0 = R^{\natural}(T_0)$, $L_+ = R^{\natural}(T_+)$, and $L_- = R^{\natural}(T_-)$. Then there is an exact triangle.

 $FH(L_0,L)$ $FH(L_+, L) \rightarrow FH(L_-, L)$

It appears that proving invariance of this Lagrangian Floer theory invariant will require more cut and paste techniques, for tangles with more strands or removing multiple balls (say, a ball around each crossing). Here's some progress on the former.

Symplectic properties of $R(S^2, 2n \text{ pts})$ following Goldman, Jeffrey-Weitsman

 $R(S^2, 2n \text{ pts})$ vs $\mathcal{M}(F_n) = Hom(\pi_1(F_n), SU(2))/conj$

There is a Hamiltonian *n*-torus action on an open subset of $\mathcal{M}(F_n)$ with symplectic reduction $R(S^2, 2n)$. Essentially, $\mu = (tr(\rho(a)), tr(\rho(b)), tr(\rho(c)))$ is the moment map.

Generic Structure Theorem (-,K)

Assume S^2 splits a knot into *n*-strand tangles T_1 (with earring) and T_2 (without). After generic small holonomy perturbations w/ curves missing S^2 , $R_{\pi_1}^{\natural}(T_1)$ and $R_{\pi_2}(T_2)$ are (2n-3)-dimensional smooth manifolds except 2^{n-1} points in $R_{\pi_2}(T_2)$ with $c(\mathbb{C}P^{n-2})$ neighborhoods. Restriction to the 2n-punctured S^2 gives stratum preserving Lagrangian immersions with "cone embeddings" into the (4n-6)-dimensional $R(S^2, 2n)$ with its 2^{2n-2} singular points with c(M) neighborhoods.

In general, there is a double branched cover $p: F_{n-1} \to S^2$ branched along 2n points.

$$p^*: R(S^2, 2n) \to R(F_{n-1}, 2n)_{-1} \cong R(F_{n-1}, 2n)_{+1} \cong \mathcal{M}(F_{n-1})$$

Singular points of $R(S^2, 6)$ have $c(S^2 \times S^3)$ neighborhoods.