Regularity and symplectic properties of traceless $\text{SU}(2)$ character varieties of tangles

Christopher Herald

Department of Mathematics and Statistics
University of Nevada, Reno

March 21, 2016
Kronheimer-Mrowka Singular Instanton Knot Homology $I^\flat(K)$

$K \subset S^3$ Set $X = S^3 \setminus (K \cup H \cup W)$.

$A^\flat = \{\text{singular } SU(2) \text{ connections on } X, \text{ traceless along } K \text{ and } H, \text{ giving nontrivial } SO(3) \text{ bundle with } w_2 \text{ dual to } W\}$

Take Morse homology of $cs : A^\flat / \mathcal{G} \to \mathbb{R}/\mathbb{Z}$.

Critical pts $\leftrightarrow \{\text{traceless singular flat } SU(2) \text{ connections on } X\} / \mathcal{G}$

Conditions:

$hol_{\mu_K}(A)$ traceless
$hol_{\mu_H}(A)$ traceless
$hol_{\mu_W}(A) = -1$

Figure: Add an earring to knot K.

Christopher Herald
$cs : \mathcal{A}^h / G \to \mathbb{R}$ is, at best, Bott-Morse with many critical circles. (An incompressible T^2 separates knot complement from $K \cup H \cup W$; most flat connections are irreducible on both sides.) Thus, one must perturb to get a Morse function.

- $I^h(K)$ is \mathbb{Z}_4 graded.
- $I^h(K)$ is isomorphic to sutured Floer theory, which categorifies $\Delta(K) = \sum c_i t^i$. Thus $\sum |c_i| \leq \text{Rank } I^h(K) \leq \text{Rank } CI^h(K)$.
- There is a spectral sequence with E_2 page $Kh^{red}(\overline{K})$ abutting to $I^h(K)$, so $\text{Rank } I^h(K) \leq \text{Rank } KH^{red}(\overline{K})$.

There is no combinatorial definition of $I^h(K)$. Calculations have only been possible where these bounds determine $I^h(K)$.

Christopher Herald
This talk is about work of $H^r K$, $r = 0, 1, 2, 3$, exploring a Lagrangian Floer homology related to the $I^\flat(K)$. {Hedden, –, Hogancamp, Kirk}

Identify the critical set of $cs: A^\flat/G \to \mathbb{R}/\mathbb{Z}$ with

$$R^\flat(X) = \{SU(2) \text{ reps} \mid Tr(\rho(\mu_K)) = Tr(\rho(\mu_H)) = 0, \rho(\mu_W) = -1\}/\text{conj}$$

which can be calculated from a π_1 presentation.

Overall goal: get a more tractable, topological definition of boundary operators defining $I^\flat(K)$, without instantons.
The Pillowcase and a Tangle Decomposition of K

Let a 2-sphere split K into two 2-tangles:

- $T_0 =$ trivial 2-tangle with earring.
- $T_1 =$ the rest of K.

![Figure: T_0](image)

$$R(S^2 \setminus 4 \text{ points}) = \{\text{homomorphisms } \rho : \pi_1(S^2 \setminus 4 \text{ points}) \to SU(2) \mid \text{all } 4 \text{ generators go to traceless elements}\}/\text{conjugation}$$

The four π_1 elements linking K in S^2 are sent to i, $e^{\gamma k}i$, $e^{\theta k}i$, $e^{(\theta - \gamma) k}i$.

$$R(S^2 \setminus 4 \text{ points}) = \{(\theta, \gamma) \in [0, \pi] \times [0, 2\pi]\}/\sim,$$

edges identified to make pillowcase. Only the four corners are abelian.
Circles arise here due to fibration from $R^\natural (B \setminus (\text{arcs} \cup \text{earring}))$ to its image in pillowcase. In this illustration, pink arc hits blue arc in three points, with preimage two circles and a point.
Transversality in Gauge Theory vs Topology

“Holonomy perturbations” in gauge theory definition can be interpreted as follows.

• Drill out more curves (adding more generators to π_1).

• Impose certain relations between the meridinal and longitudinal holonomies of these new link components.

Theorem (H,–,K)

Doing this with the curve P in the standard tangle causes each circle to contribute two generators to the chain complex.

Theorem (–,K)

There are also curves in the outside tangle complement that make $R_\pi(\text{outside tangle})$ into a 1-manifold.
After these perturbations π, we obtain a pair of 1-manifolds in the pillowcase. The traceless perturbed character variety for the part with the earring misses the singular corner points.
Recent work by Abouzaid and de Silva-Robbin-Salamon simplifies Lagrangian Floer homology $FH(L_1, L_2)$ in 2D surface. Boundary operator is combinatorially defined, i.e., ∂ defined by counting immersed disks.

Requirements:

- Surface needs noncompact universal cover
- Need immersed 1-manifolds with no fish tails (i.e., no double points creating null homotopic loop)
- L_1, L_2 are homotopically essential.
- Covers of L_1 and L_2 are not homotopic.

Theorem

$FH(L_1, L_2)$ depends only on the homotopy classes of L_1, L_2.
We extend the definition to the pillowcase $P=2$-sphere with “corners”.

- $L_1 = R_{\pi}^f (B \setminus T_0)$ (traceless representation variety for arcs with earring) misses corners.
- $L_2 = R (B \setminus T_1)$ hits corners, but with well-defined tangent direction.

Ultimately, we can extend combinatorial Lagrangian Floer theory to pillowcase with neighborhoods of corners deleted.

Using A_2, A_3 relation in this context we show, for an appropriate class of Lagrangians:

Theorem (H,–,K)

$FH(L_1, L_2)$ depends only on homotopy classes of L_1 and L_2 in $P \setminus \{corners\}$.
Gradings

$I^h(K)$ is \mathbb{Z}_4 graded. Adapting Seidel’s graded Lagrangians, we define a relative \mathbb{Z}_4 grading $FH(L_1, C)$ when:

- $L_1 = R^h_\pi(T_0)$
- $C =$ circle, or arc connecting corners of P, without fishtails

Theorem (H,–,K)

For all 2-bridge knots K, and all torus knots K checked so far, there is

- a tangle decomposition $K = T_0 \cup T_1$,
- perturbations in T_0 and T_1 making $R^h(T_1)$ and $R(T_0)$ smooth,

$$\bigoplus_{i=0}^{k} FH(L_1, C_i) \cong I^h(K).$$

More work is needed to show the traceless representation varieties never have fish tails, and that $FH(R^h(T_0), R(T_1))$ is not dependent on choice of perturbation or tangle decomposition.
Further partial results

The Lagrangians in the pillowcase form an A^∞ category.

Theorem (H,−,Hogancamp,K)

*Given an outer tangle T_1 with $R(T_1) = L$, for the three ways to put in the trivial tangle with earring $\{T_0, T_+, T_-\}$, set $L_0 = R^b(T_0)$, $L_+ = R^b(T_+)$, and $L_- = R^b(T_-)$. Then there is an exact triangle.***

\[\begin{align*}
FH(L_0, L) \\
\downarrow \\
FH(L_+, L) \\
\downarrow \\
FH(L_-, L)
\end{align*} \]

Christopher Herald
It appears that proving invariance of this Lagrangian Floer theory invariant will require more cut and paste techniques, for tangles with more strands or removing multiple balls (say, a ball around each crossing). Here’s some progress on the former.

Symplectic properties of $R(S^2, 2n \text{ pts})$

following Goldman, Jeffrey-Weitsman

There is a Hamiltonian n-torus action on an open subset of $\mathcal{M}(F_n)$ with symplectic reduction $R(S^2, 2n)$. Essentially, $\mu = (\text{tr}(\rho(a)), \text{tr}(\rho(b)), \text{tr}(\rho(c)))$ is the moment map.
Assume S^2 splits a knot into n-strand tangles T_1 (with earring) and T_2 (without). After generic small holonomy perturbations w/ curves missing S^2, $R^\h_{\pi_1}(T_1)$ and $R_{\pi_2}(T_2)$ are $(2n - 3)$-dimensional smooth manifolds except 2^{n-1} points in $R_{\pi_2}(T_2)$ with $c(CP^{n-2})$ neighborhoods. Restriction to the $2n$-punctured S^2 gives stratum preserving Lagrangian immersions with “cone embeddings” into the $(4n - 6)$-dimensional $R(S^2, 2n)$ with its 2^{2n-2} singular points with $c(M)$ neighborhoods.
The 6-punctured 2-sphere (K)

In general, there is a double branched cover \(p : F_{n-1} \to S^2 \) branched along \(2n \) points.

\[
p^* : R(S^2, 2n) \to R(F_{n-1}, 2n)_{-1} \cong R(F_{n-1}, 2n)_{+1} \cong \mathcal{M}(F_{n-1})
\]

Case \(n = 3 \)

\[
\begin{align*}
R^{ab}(S^2, 6) & \to \{ \text{nodal points} \} \\
\downarrow & \\
R^{bd}(S^2, 6) & \to \text{singular Kummer surface } T^4 / \mathbb{Z}/2 \\
\downarrow & \\
R(S^2, 6) & \to R(F_2) = \mathbb{C}P^3
\end{align*}
\]

Singular points of \(R(S^2, 6) \) have \(c(S^2 \times S^3) \) neighborhoods.